
Centre for Oceanographic Research in the Southeast Pacific (COPAS) 
Concepción, Chile 

Alfred Wegener Institute for Polar and Marine Research (AWI) 
Bremerhaven, Germany 

Trophic interactions in the microbial food web in a 
coastal upwelling system off central Chile (~36°S) 

DISSERTATION

zur
Erlangung des akademischen Grades 

eines Doktors der Naturwissenschaften 
(Dr. rer. nat.) 

am Fachbereich 02 Biologie/Chemie der 
Universität Bremen 

Daniela Böttjer 

Bremen 2007 



First reviewer
Prof. Dr. Kai Bischof 

Dept. of Biology, University of Bremen, Germany 
Second reviewer

Dr. Carmen Morales Van de Wyngard 
Dept. of Oceanography and Centre for Oceanographic Research in the Southeast Pacific, 

University of Concepción, Concepción, Chile 



Science cannot solve the ultimate mystery of nature. And that is because, in the last analysis, 
we ourselves are part of the mystery that we are trying to solve

Max Planck 



Acknowledgements 

There are many people I would like to thank for helping me in many ways to do this work.  

First of all I wish to thank my two advisors, Dr. Carmen Morales and Prof. Dr. Ulrich 

Bathmann for their support in realising this thesis, for their encouragement, many helpful 

suggestions and advices but also for their patience. The possibility of working together with 

Carmen in Chile opened the “Microbial Food Web” world for me! 

Special thanks to the Centre for Oceanographic Research in the Southeast Pacific (COPAS) 

and especially to Research Project 3 on “Plankton communities: structure, trophic and 

metabolic processes” led by Drs Rubén Escribano and Carmen Morales, University of 

Concepción for providing facilities, materials as well as organizational and financial support. 

In this context, I also would like to acknowledge Dr. R. Escribano for running the COPAS 

Time Series off Concepción; a lot of samples included in this thesis were collected during 

these cruises! In addition, the Alfred-Wegener-Institute supported me kindly with some of the 

materials for my experiments.  

I also want to thank the DAAD (German Academic Exchange Program) for supporting me 

with a 1-year dissertation fellowship. 

It was a pleasure to work at the Marine Biological Station of the University of Concepción in 

Dichato. I have spent plenty of time there carrying out many experiments, analysing samples 

and working on all the data, but I have also had great conversations with many colleagues, 

especially with Gisela Letelier, Paula Mendoza and Karina Neira. A particular thank also to 

José Marileo and the crew of the RV Kay Kay, especially to José Caamaño, for their support 

during sampling. Muchísimas gracias a todos! 

I am also grateful to Cecilia Torres, Klaudia Hernandez, Melissa Lobegeier, Vreni 

Häu ermann, Günter Fösterra and Magnolia Murcia who shared important experiences and 

moments with me in Chile.  

Thanks to my friends back home, Jan-Benjamin, Jasmin, Sandra, Jane, Andi, Silke, Tobi and 

Janna for keeping close contact with me over the three years that I have spent in Chile and for 

their visits, supply of German books, sweets, many phone calls and emails. 



In particular I want to thank my parents and grandparents for all their support and their great 

understanding.

A last, but very special thank to Jaime Olave for sharing three years of good and tough 

moments in Chile with me, for being endlessly patient, for his company and inspiration.  

Simply, there aren’t words that can express how grateful I am! 



Contents

Summary 1

Zusammenfassung 3

Resumen 6

1. Introduction 9

1.1. Micro-organisms, the microbial food web and it’s relevance in marine 
microbial ecology  

9

1.2. Background knowledge on the microbial food web in the coastal 
upwelling area off Concepción, central Chile 

14

2. Thesis objectives and outline 18

3. Methods 21

3.1. Structure of nanoplanktonic assemblages 21

3.2. Grazing rate estimates 22

    3.2.1. Micro-heterotrophic grazing – community estimates using the 
dilution method 

22

    3.2.2. Micro-heterotrophic grazing – species specific estimates using the 
traditional bottle incubation method 

23

    3.2.3. Nano-heterotrophic grazing – using a generic model 24

4. Scientific contributions 26

4.1. Böttjer D, Morales CE (in press) Nanoplanktonic assemblages in the 
upwelling area off Concepción (~36°S), central Chile: abundance, 
biomass and grazing potential during the annual cycle. Progress in 
Oceanography

26

4.2. Böttjer D, Morales CE (2005) Microzooplankton grazing in a coastal  
embayment off Concepción, Chile, (~36°S) during non-upwelling 
conditions. Journal of Plankton Research 27(4): 383-391

27

4.3. Böttjer D, Morales CE, Bathmann U (submitted) Are small cyclopoid 
copepod nauplii (Oithona spp.) important grazers in the highly 
productive upwelling system off central Chile? Limnology and 
Oceanography

28

5. Discussion 29

5.1. The impact of environmental variability on nano- and   microplankton 
assemblages in the coastal upwelling area off Concepción 

29

5.2. The impact of micro-heterotrophic grazing and the carbon flow in the 
coastal upwelling area off Concepción 

31

6. Perspectives 36

7. Literature cited 38



  Summary  

1

Summary

Coastal upwelling areas are highly productive systems and were initially characterized by 

having a short food chain, being ecologically efficient in the trophic transfer. Large micro-

phytoplankton (>20 μm; mainly chain-forming diatoms), predominating under high 

availability of nutrients in the mixed layer, are grazed by large herbivorous zooplankton, and 

they, in turn, are consumed by planktivorous fishes. Under this scheme, little attention was 

paid to the role of micro-organisms (protists and metazoans <200 μm) in these areas. This 

thesis provides an assessment of the temporal variability in the structure of micro-organism 

assemblages and of the trophic interactions in microbial food webs in the Humboldt Current 

System (HCS) off Concepción, central Chile (~36°S), as a basis to understand the relevance 

of the carbon flow through the microbial food web in this coastal upwelling area.

Temporal changes in the structure (composition, abundance, and biomass) of nanoplanktonic 

assemblages, as well as the potential grazing impact of nano-heterotrophs on picoplanktonic 

prokaryotes (autotrophic and heterotrophic bacteria), were investigated on the shelf off 

Concepción (Sta. 18; 36°30’S, 73°08’W; 90 m depth) during contrasting seasonal periods 

(upwelling, non-upwelling) over two annual cycles (18 August 2004 - 28 July 2006). Most of 

the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no 

clear seasonal differences in abundance or biomass in this layer was observed. Changes in 

nanoplankton abundance were significantly but weakly correlated with changes in the 

hydrographic variables (r < 0.4). Nanoflagellates dominated the total integrated nanoplankton 

abundance (3 to 317 x 109 cells m-2; 0 - 80 m) whereas nanodiatoms and nanodinoflagellates 

generally contributed to a lesser degree (<20%) though, sporadically, they were important 

components of the total integrated nanoplankton biomass (total: 0.02 - 10.6 g C m-2). The 

potential grazing rates on prokaryotic prey ranged from 3 to 242 bacterioplankton cells 

predator-1 h-1 and from 0.1 to14 cyanobacteria predator-1 h-1, the nanodinoflagellates having 

higher grazing rates than the nanoflagellates. The resulting grazing impact by nano-

heterotrophs on the standing stock of prokaryotes ranged from 6 to 152% (mean: 59%), 

implying that they control the picoplankton assemblages in the upwelling area off 

Concepción.

Micro-heterotrophs have been shown to have a significant grazing impact on nano- and 

microphytoplankton abundances and to channel a large proportion of the primary production 

(PP) in a variety of marine systems. Micro-heterotrophic grazing rates were assessed with the 

seawater dilution method in Coliumo Bay (36°32´S, 72°56´W; 20 m depth) during the non-

upwelling, autumn/winter period in 2003 and 2004. Chlorophyll a (Chl-a) and cell abundance 
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were estimated to assess the changes of prey and predators during the incubations. Mean 

instantaneous phytoplankton net growth rates (k) and microzooplankton grazing rates (g) 

ranged between 0.19 - 0.25 day-1 and 0.26 - 0.52 day-1, respectively. These estimates were 

used to calculate the potential PP (6 - 17 mg C m-3 d-1) and the percentage of PP that is 

removed by microzooplankton assemblages. In all experiments, the grazing impact 

represented a significant (>100%) fraction of the potential PP and most of the removal by the 

grazers corresponded to the <20 μm fraction (cyanobacteria and autotrophic nanoflagellates). 

These results suggest that microzooplankton grazing has an important impact on total PP 

during non-upwelling conditions in the coastal area.  

In addition, the feeding behaviour and grazing rates of an abundant and persistent micro-

heterotroph in the system under study, the naupliar phase of Oithona spp., were explored. Diet 

composition, ingestion rates, and food-type preferences were assessed through grazing 

experiments (bottle incubations) with: i) different size fractions of natural planktonic 

assemblages (<3, <20, <100 and <125 μm), and ii) cultures of the nanoflagellate Isochrysis

galbana. When offered nano- and microplanktonic prey fraction, the nauplii ingested 

nanoflagellates, small-sized dinoflagellates, and diatoms in solitary form (range: 0.07 - 73 x 

103 cells nauplii-1 d-1). Under a mixture of pico- and nanoplankton, the nauplii mainly fed on 

nanoflagellates (3 - 14 x 103 cells nauplii-1 d-1). Picoplankton was also ingested, but at higher 

rates when it was the solely food available (5 - 18 x 106 cells nauplii-1 d-1). Ingestion rates on 

I. galbana (28 - 31 x 103 cells nauplii-1 d-1) were in the range of those estimated for natural 

nanoflagellates as food. Carbon uptake by the Oithona nauplii was mainly derived from the 

nanoflagellates (mean = 350 ng C nauplii-1 d-1). At the highest abundances of the nauplii in the 

system under study (15 L-1), the daily grazing impacts on the prey standing stocks ranged 

from <21% for picoplankton, <68% for nanoflagellates (mean = 34%), <24% for 

dinoflagellates, and <13% for diatoms. This suggests that Oithona spp. nauplii exert a 

significant control on the abundances of the nanoplankton assemblages in the coastal area.  

Altogether, these findings indicate that the microbial food web is a fundamental and 

permanent element in the upwelling system off Concepción. Given the high productivity of 

this system, a need to revise the microbial food web being an inefficient carbon pathway, 

acting as a sink of biogenic carbon, is discussed. Microbial food webs do not strictly include 

several grazing steps to incorporate the photosynthetically fixed carbon into higher trophic 

levels. Instead, this carbon could be channelled through the microbial food web as efficiently 

as through the classical herbivorous food web, thus sustaining a high, year-round, productivity 

in the system. 
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Zusammenfassung

Küstenauftriebsgebiete gehören zu den produktivsten Systemen der Ozeane, die üblicherweise 

durch eine klassische, kurze Nahrungskette vom Mikrophytoplankton über große, herbivore 

Zooplankter zu planktivoren Fischen charakterisiert wurden, ökologisch effizient in Bezug auf 

den trophischen Transport. Dagegen wurde die Bedeutung und Funktion des mikrobiellen 

Nahrungsnetzes (Protisten und Metazooplankton <200 μm) in diesen Gebieten bisher nur 

unzureichend untersucht. Die vorliegende Dissertation liefert eine umfassende Beschreibung 

der zeitlichen Entwicklung in der Struktur von Mikroorganismen sowie der Rolle und 

Bedeutung trophischer Interaktionen im Humboldtstrom (HCS) in Zentral-, Südchile 

(Concepción ~36°S) um die Relevanz des Kohlenstoffflusses autotropher Biomasse und 

Produktion durch das mikrobielle Nahrungsnetz im Untersuchungsgebiet tiefgreifender zu 

verstehen.

Die zeitliche Entwicklung in der Struktur (Zusammensetzung, Abundanz und Biomasse) des 

Nanoplanktons sowie der potentielle Fraßdruck von Nanoheterotrophen auf Prokaryonten des 

Pikoplanktons (autotrophe und heterotrophe Bakterien) wurde über zwei Jahre (18. August 

2004 bis 28. Juli 2006) zu unterschiedlichen hydrographischen Bedingungen (Auftrieb und 

Nicht-Auftrieb) am Kontinentalschelf vor Concepción (St. 18; 36°30'S, 73°08' W; 90 m 

Tiefe) untersucht. Maximale Abundanzen des Nanoplanktons zeigten sich stets im 

Oberflächenwasser (<30 m) und keine saisonalen Unterschiede bezüglich ihrer Abundanzen 

oder Biomasse wurden in dieser Schicht der Wassersäule beobachtet. Variationen in den 

Abundanzen des Nanoplanktons korrelierten signifikant, wenn auch nur schwach mit 

Variationen in den hydrographischen Variablen (r < 0.4). Nanoflagellaten dominierten die 

Abundanz des Gesamtnanoplanktons (3 bis 317 x 109 Zellen m-2; 0-80 m), während 

Nanodiatomeen und Nanodinoflagellaten generell einen geringen Anteil hatten (<20%). 

Dagegen stellten Diatomeen und Dinoflagellaten gelegentlich einen wesentlichen Teil der 

Gesamtbiomasse des Nanoplanktons (0.02 bis 10.6 g C m-2) dar. Fraßraten des 

Nanozooplanktons variierten zwischen 3 bis 242 Bakterien Räuber-1 h-1 bzw. von 0.1 bis 14 

Cyanobakterien Räuber-1 h-1, wobei die Raten der Nanodinoflagellaten höher waren als die 

der Nanoflagellaten. Der resultierende Fraßdruck auf die Pikoplanktonbestände („standing 

stocks“) reicht von 6-152% (Mittelwert 59%) und ist ein Hinweis auf das Potential des 

Nanozooplanktons, die Populationen des Pikoplanktons im Auftriebsgebiet vor Concepción 

zu kontrollieren. 

Mikroheterotrophe werden als Haupkonsumenten des Nano-, und Mikrophytoplankton 

gesehen und ihre Wichtigkeit, Primärproduktion (PP) an höhere Trophiestufen zu schleusen, 
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wurde in vielen verschiedenen marinen Ökosystemen anerkannt. Fraßraten von 

Mikroheterotrophen wurden mit der „Verdünnungsmethode“ während Nicht-Auftriebszeiten 

im südlichen Herbst/Winter 2003 und 2004 in der Bucht von Coliumo bestimmt (36°32´S, 

72°56´W; 20m Tiefe). Chlorophyll a (Chl-a) wurde als allgemeiner Indikator verwendet um 

Änderungen im autotrophen Beutebestand während der Inkubationszeit zu ermitteln, jedoch 

wurden zusätzlich Zellzählung (Mikroskopie) von Beute-, als auch Räuberorganismen 

durchgeführt. Die Verdünnungsexperimente zeigten das erwartete Muster von zunehmender 

Phytoplanktonsterblichkeit mit Abnahme des Verdünnungsfaktor. Die Mittelwerte der 

Phytoplanktonwachstumsrate (k) und Mikrozooplanktonfraßrate (g), erstreckten sich 

zwischen 0.19 - 0.25 Tag-1 und 0.26 - 0.52 Tag-1, und wurde verwendet, um die potentielle PP 

(6 - 17 mg C m-3d-1) und deren Anteil zu berechnen, der durch das Mikrozooplankton entfernt 

wird. In allen Experimenten stellte der Fraßeinfluss einen bedeutenden Anteil (>100%) der PP 

dar und Zellzählungen zeigten, dass der größte entfernte Anteil aus der Fraktion < 20 μm 

(Cyanobakterien und autotrophe Nanoflagellaten) stammte. Dies zeigt, dass 

Mikrozooplankton einen bedeutenden Einfluss auf die Gesamtprimärproduktion während 

Nicht-Auftriebszeiten besitzt.  

Des weiteren wurde das Fraßausmaß einer ganzjährig präsenten Mikroheterotrophen 

Komponente (kleine cyclopoide Copepoden Nauplien von Oithona spp. <200 μm) untersucht. 

Nahrungsspektrum, Fraßraten sowie Nahrungspräferenzen wurden in Experimenten (mit 

Flascheninkubationen) ermittelt, in denen i) unterschiedliche Fraktionen natürlicher 

Planktongemeinschaften (<3, <20, <100 und <125 μm) und ii) Kulturen des Nanoflagellaten 

Isochrysis galbana den Nauplien als Nahrung angeboten wurde. Bei einem Nahrungsangebot 

aus Nano,- und Mikroplankton konsumierten die Nauplien ausschließlich Nanoflagellaten, 

kleine Dinoflagellaten und einzellige Diatomeen (0.07 - 73 x 103 Zellen Nauplius-1 d-1). Bei 

einer gemischten Nahrung aus Piko,- und Nanoplankton, konsumierten die Nauplien 

überwiegend Nanoflagellaten (3 - 14 x 103 Zellen Nauplius-1 d-1) und nur vereinzelt 

Pikoplankton. Wird letzteres jedoch als alleiniges Futter angeboten, treten Frassraten häufiger 

auf und erstreckten sich zwischen 5 - 18 x 106 Zellen Nauplius-1 d-1. Fraßraten von I. galbana

(28 - 31 x 103 Zellen Nauplius-1 d-1) lagen im Bereich des natürlichen Nanoflagellatenfutters. 

Höchste Kohlenstoffaufnahmen erzielten die Oithona Nauplien durch die Ernährung von 

Nanoflagellaten (Mittelwert von 350 ng C Nauplius-1 d-1). Bei einer maximalen Abundanz der 

Nauplien im Untersuchungsgebiet von 15 Nauplien L-1, wurde der tägliche Fraßdruck auf die 

jeweiligen Beutebestände („standing stocks“) ermittelt: <21% für Pikoplankton, <68% für 

Nanoflagellaten (Mittelwert = 34%), <24% für Dinoflagellaten und <13% für die Diatomeen 
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beträgt. Daraus lässt sich schließen, dass Oithona spp. Nauplien in der Lage sind die 

Abundanzen des Nanoplanktons zu kontrollieren.

Die Ergebnisse der vorliegenden Arbeit zeigen, dass das mikrobielle Nahrungsnetz einen 

saisonal bedeutenden, ganzjährig wichtigen Bestandteil des pelagischen Nahrungsnetzes im 

Auftriebsgebiet von Concepción darstellt. In Bezug auf den Kohlenstofftransport wird das 

mikrobiellen Nahrungsnetz als ineffizient gesehen, was jedoch der ganzjährigen 

Producktivität des Küstenauftriebsgebietes von Concepción wiederspricht. Dieses Konzept 

wird evaluiert, da der photosynthetisch fixierte Kohlenstoff genauso effizient durch das 

mikrobielle wie das herbovire Nahrungsnetz geschleust werden kann, was die ganzjährige 

Produktivität des Küstenauftriebsgebiets von Concepción unterstützt. 
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Resumen

Las áreas de surgencia costera son sistemas altamente productivos y fueron inicialmente 

caracterizadas por tener una cadena alimentaria corta, siendo ecológicamente eficientes en la 

transferencia trófica. El micro-fitoplancton (>20 μm; principalmente diatomeas en cadena), 

predominantes en la capa de mezcla frente a una alta disponibilidad de nutrientes, son 

consumidas por zooplancton herbívoro de tamaño grande, y ellos a su vez son consumidos por 

peces planctívoros. Bajo este esquema, poca atención ha recibido el rol y la función de los 

micro-organismos (protistas y metazoa <200 μm) en áreas de surgencia. Esta tesis presenta 

una evaluación de la variabilidad temporal en la estructura de comunidades de micro-

organismos y de las interacciones tróficas en la trama microbiana en el Sistema de Corrientes 

Humboldt (HCS) en la zona central de Chile frente a Concepción (~36° S), como base para 

entender la relevancia del flujo de carbono vía la trama microbiana en este sistema de 

surgencia costera. 

Los cambios temporales en la estructura (composición, abundancia, y biomasa) de los 

componentes nanoplanctónicos, así como el impacto potencial de consumo de nano-

heterótrofos sobre los procarióticas picoplanctónicos (bacterias autótrofos y heterótrofos) 

fueron investigados en un área de la plataforma continental frente a Concepción (Est. 18; 

36°30'S, 73°08' W; profundidad de 90 m) en distintos períodos estacionales (surgencia y no 

surgencia), durante dos ciclos anuales (18 de agosto de 2004 - 28 de julio de 2006). La mayor 

parte del nanoplancton se concentró en las aguas superficiales (<30 m) durante todos los 

muestreos y no se observaron diferencias estacionales en abundancia o biomasa en esta capa. 

Los cambios en la abundancia del nanoplancton se correlacionaron débil pero 

significativamente con los cambios en las variables hidrográficas (r < 0.4). Los 

nanoflagelados fueron dominantes en la abundancia integrado total de nanoplancton (3 - 317 x 

109 células m-2; 0 - 80 m) mientras que las nanodiatomeas y los nanodinoflagelados fueron 

contribuyentes menores generalmente (<20%) aunque esporádicamente fueron componentes 

importantes en la biomasa integrada total de nanoplancton (total: 0.02 - 10.6 g C m-2). Las 

tasas de ingestión potencial de los nano-heterótrofos sobre las presas procarióticas presentaron 

un rango entre 3 y 242 bacterioplancton depredador-1 h-1 y entre 0.1 y 14 cianobacterias 

depredador-1 h-1, siendo las tasas de los nanodinoflagelados más altas que la de los 

nanoflagelados. Como resultado, el impacto de consumo por nano-heterótrofos sobre los 

“standing stocks” de procariontes se extendió entre 6 y 152% (promedio 59%), implicando 

que ellos controlan las comunidades de picoplancton en el área de surgencia frente a 

Concepción.
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Los micro-heterótrofos han sido reconocidos por tener un impacto de consumo significativo 

sobre las abundancias de nano- y micro-fitoplancton y de canalizar una proporción importante 

de la producción primaria (PP) en una variedad de sistemas marinos. Las tasas de ingestión de  

micro-heterótrofos fueron determinadas con el método de dilución durante el período del 

otoño/invierno (no-surgencia) en 2003 y 2004, en la bahía de Coliumo (36°32´S, 72°56´W; 

profundidad de 20 m). La clorofila a (Chl-a) y la abundancia celular fueron estimadas para 

evaluar los cambios en las presas y los depredadores durante las incubaciones. El promedio de 

las tasas de neta crecimiento del fitoplancton (k) y de ingestión del microzooplancton (g) se 

extendieron entre 0.19 - 0.25 día-1 y 0.26 - 0.52 d-1, respectivamente. Estas estimaciones 

fureon utilizadas para calcular la PP potencial (6 - 17 mg C m-3 d-1) y el porcentaje  de la PP 

que es removida por comunidades microzooplanctónicas. En todos los experimentos, el 

impacto de consumo representó una fracción significativa (>100%) de la PP potencial y la 

mayor parte de la remoción por micro-heterótrofos fue de la fracción <20 μm (cianobacterias 

y nanoflagelados autótrofos). Estos resultados sugieren que el consumo del microzooplancton 

tiene un impacto importante sobre la PP total durante condiciones de no-surgencia en el área 

costera.

Además, el comportamiento alimentario y la tasa de ingestión de un componente micro-

heterótrofo abundante y persistente en el sistema en estudio, la fase naupliar de Oithona spp.) 

fueron explorados. La composición de la dieta, las tasas de ingestión, y las preferencias 

alimentarias fueron evaluadas en experimentos de consumo (incubaciones en botella) con: i) 

diversas fracciones planctónicos naturales (<3, <20, <100 y <125 μm), y ii) cultivos del 

nanoflagelado Isochrysis galbana. Cuando los nauplios tuvieron presas nano- y 

microplanctónicas, ellos consumieron nanoflagelados, nanodinoflagelados, y diatomeas 

solitarias (rango: 0.07 - 73 x 103 células nauplio-1 d-1). Frente a una mezcla del pico- y 

nanoplancton, los nauplios se alimentaron principalmente de nanoflagelados (3 - 14 x 103

células nauplio-1 d-1). El picoplancton también fue ingerido pero a tasas mayores cuando fue el 

único alimento disponible (5 - 18 x 106 células nauplio-1 d-1). Las tasas de ingestión de células 

de I. galbana (28 - 31 x 103 células nauplio-1 d-1) estuvieron en el rango de aquellas estimadas 

para los nanoflagelados naturales como alimento. La incorporación de carbono por los 

nauplios de Oithona fue derivado principalmente desde los nanoflagelados (promedio de 350 

ng C nauplio-1 d-1). A los niveles más altos en abundancia de nauplios en el sistema en estudio 

(15 L-1), los impactos de consumo diario sobre los “standing stocks” fueron entre <21% para 

picoplancton, <68% para nanoflagelados (promedio = 34%), <24% para dinoflagelados, y 
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<13% para diatomeas. Esto sugiere que los nauplios de Oithona spp. ejercen un control 

significativo sobre las abundancias del nanoplancton en el área costera. 

En conjunto, estos resultados indican que la trama microbiana es un elemento fundamental y 

permanente en el sistema de surgencia costera frente a Concepción. Dada la alta 

productividad de este sistema, se discute la necesidad de revisar que la trama microbiana sea 

una vía ineficiente en la transferencia de carbono. Las tramas tróficas microbianas no 

necesariamente incluyen varios pasos de consumo para la incorporación del carbono fijado 

fotosintéticamente hacia los niveles tróficos más altos. En cambio, este carbono se puede 

canalizar por la cadena microbiana en forma tan eficiente como por la cadena herbívora 

clásica y, por lo tanto, manteninedo una alta productividad durante todo el año en este 

sistema. 
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1. Introduction 

Marine microbes form complex and dynamic communities within the water column and sea-

floor of coastal and oceanic environments are now known to be responsible for about half of 

the Earth’s primary productivity. They encompass a wide metabolic and physiological 

diversity and exhibit very fast growth rates; therefore they play a fundamental role in the 

transfer of matter and energy and in the cycling of biogeochemical important elements, such 

as carbon and nitrogen, through marine ecosystems. Technological advances, ranging from 

microbial genomics to satellite remote sensing, have improved the understanding of the 

structure and function of these microbial communities and their processes in the ocean. Still, 

there is much to be learned from more traditional whole-ecosystem approaches, such as those 

focused on pattern of species abundance and biomass, food webs and community structure, to 

understand the feedback mechanisms between marine ecosystems and the atmosphere.  

1.1. Micro-organisms, the microbial food web and it’s relevance in microbial ecology

Studies of the microbial food web and related interactions are relatively “new” in the 

discipline of microbial oceanography. Due to the small size of microbes, as well as the 

associated difficulties in their collection, preservation and identification, but also because of 

their great functional diversity, studies on these organisms had been mostly neglected. The 

recognition of the importance of heterotrophic microbes can be followed back to the very 

early studies of Beers & Stewart (1979) and Sorokin & Kogelschatz (1979). At about the 

same time, major progresses of methodological approaches in the field of microbial 

oceanography greatly improved the quantification of the abundance of marine bacteria 

(Hobbie et al., 1977; Porter & Feigh, 1980) and protists (Davis & Sieburth, 1982; Caron, 

1983), bacterial activity (Furhrmann & Azam, 1982; Kirchman et al., 1985), and the 

microbial loop concept (Azam et al., 1983; Ducklow 1983) that had been stimulated to a large 

extent by Pomeroy’s seminal article (Pomeroy, 1974). 

At the NATO Advanced Research Institute in Bombannes (France, 1982), members of the 

working group on bacteria and bacterivory brought together evolving information about 

microbial abundance and activity in the sea, resulting in the paper of Azam et al., (1983) 

about the ecological role of water-column microbes in the sea. In this paper, the authors 

proposed that the microbial components of pelagic food webs formed a separate entity. They 

named this the “microbial loop” (heterotrophic bacteria, bacterivorous protists and larger 

protists) and distinguished it from the classical food chain (larger sized phytoplankton, 

herbivorous metazooplankton and planktivorous fish), as illustrated in Figure 1. 
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Figure 1. Marine microbial interactions in the upper ocean (DeLong & Karl, 2005) 

Shown on the left in this figure is the classical pathway of the carbon and energy flow through 

algae, to metazoan herbivores and on to higher trophic levels (Ryther, 1969; Steele, 1974). On 

the right is the microbial food web, which uses energy stored in the non-living, detrital carbon 

pool to produce microbial biomass that can re-enter the classic pathway of carbon and energy 

flow. Also shown in the microbial food web are viral particles and Archaea. So far though, 

there is only rudimentary knowledge of the role of Archaea in the oceanic food web. The size 

structure and functional groups of the food web largely determine the downward flux of 

particulate carbon and energy (shown at the bottom of this diagram) and the rate, at which it is 

exported. The classical grazer pathway (on the left side) is regarded as important in this sense 

since large-sized photosynthetic Eukarya are thought to be either grazed by herbivores which 

produce rapidly sinking faecal pellets or to directly sink to the bottom. In contrast, the 

dominance of small-sized photoautotrophs (pico-to nanoplankton) favours lower production 

and increased recycling of carbon in the upper water column occurs since various grazing 

steps are necessary to incorporate the carbon fixed by the primary producers into higher 

trophic levels (Michaelis & Silver, 1988). In addition, the faecal aggregates produced by 
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small heterotrophs that graze on small-sized photoautotrophs are relatively small and light 

(Stoecker, 1984); they remain long in suspension and do not sink directly to the bottom, so 

export is low (e.g. Michaels & Silver, 1988; Rivkin et al., 1996). The microbial and classical 

food webs coexist in all areas of the ocean, but their relative significance changes with region 

and season (e.g. Uye et al., 1999). 

The size spectrum of the various planktonic components of Azam´s proposed food web 

(1983) was based on the terminology of Sieburth et al. (1978), still nowadays used to classify 

planktonic organisms into ecological groups on the basis of their size and trophic mode. 

Single-cell organisms, including autotrophic, heterotrophic, and mixotrophic prokaryotes 

(bacteria and cyanobacteria) and eukaryotes (algae and phagotrophic protists) and viruses are 

termed “microbes” (Table 1).  

Table 1. Main groups of pelagic micro-organisms in the ocean modified after Sherr & Sherr, 2000. Microbial 
size categories are based on the terminology proposed by Sieburth et al. (1978). 

Size category Microbial group Size Range (μm)
Femtoplankton Viruses 0.01-0.2
Picoplankton Prokaryotes 
    Bacteria 
       Photoautotrophic 0.5-1.0
          Prochlorophytes 0.5-1.0
          Coccoid cyanobacteria 1.0-2.0
       Chemautotrophic 0.-1.0
       Heterotrophic 0.3-1.0
 Eukaryotes 
       Picoalgae, picoheterotrophic flagellate 1.0-2.0
Nanoplankton    Diatoms, flagellates, dinoflagellates, ciliates 2-20
Microplankton    Diatoms, dinoflagellates, ciliates, crustacean nauplii 20-200

Autotrophic organisms achieve all requirements for life from inorganic compounds and 

chemical or light energy (“self-feeder”), whereas heterotrophs obtain their requirements from 

organic compounds. An organism, capable of being autotrophic and heterotrophic at the same 

time, is termed mixotroph (Caron, 2000). The mixotrophic feeding mode is diverse and can be 

distinguished as i) obligate mixotrophic (both light and particulate food is necessary for 

sustaining growth and maintenance), ii) obligate autotrophic and facultative heterotrophic 

(only photosynthesis is essential for growth and maintenance, heterotrophy can be used to 

backup the photosynthetic apparatus in times of low light intensity), iii) obligate heterotrophic 

and facultative autotrophic (only food is necessary for sustaining growth and maintenance, but 

photosynthesis can be used to backup heterotrophy in times of low food concentrations), as 
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well as iv) facultative mixotrophic (ability to grow exclusively by either photosynthesis or 

phagotrophy/ uptake of organic compounds).  

The nanoplankton and microplankton comprise unicellular eukaryotic organisms (“Protists”) 

ranging from 2 - 20 and 20 - 200 μm in size and are very diverse in their trophic modes with 

autotrophic, heterotrophic, and mixotrophic forms. In addition, small metazoans (mostly 

crustaecean nauplii) that are <200 μm in size are also part of the microzooplankton. The main 

microbial groups in these size categories are shown in Table 1. Flagellates (considering 

dinoflagellates as a different group) are mostly included in the nanoplankton (there are few 

known species of picoflagellates) and are the most abundant component of this fraction. 

Marine flagellates are an enormously diverse group (in terms of e.g. shape, size, and the 

number and position of the flagella) and they are spread among the two major algal divisions 

(Chromophyta and Chlorophyta) of the Eukarya, in nine out of ten algal classes, and in three 

zooflagellate orders. The differentiation according to their trophic modes (autotrophic, 

heterotrophic, mixotrophic) is more complex than previously thought since mixotrophy and/or 

symbiosis among flagellates (and other protists like e.g. dinoflagellates and ciliates) appear to 

be common in marine systems (Caron, 2000). There are many different feeding mechanisms 

involved in the bacterivory of heterotrophic flagellates (they are known as most important 

grazers of bacteria in many aquatic systems) which include filter-feeding, sedimentation, 

interception feeding, and raptorial feeding supported by a pharynx or pseudopods (Boenigk & 

Arndt, 2002).

Dinoflagellates are found in both, the nano- and microplankton size fraction. They are widely 

distributed in marine and freshwater habitats and are composed of two general groups, 

thecates (amoured) and athecates (non-amoured or naked); most of the around 2500 species 

are free living. Their nutritional modes include heterotrophic, autotrophic and mixotrophic 

forms, though nearly half of the known species are heterotrophic (Dodge & Lee, 2000). 

Dinoflagellates have evolved different feeding mechanisms (Jacobsen, 1999) which enable 

them to feed upon a wide range of food types, even on large spiny diatoms (Jacobsen & 

Anderson, 1986) and copepod eggs/nauplii (Jeong, 1994). “Gulp” feeding and peduncular 

feeding has been shown for both, athecate and thecate species, and in addition, thecates are 

additional known to feed via a pallium. Some dinoflagellates form red-tide patches in coastal, 

offshore and/or oceanic waters (Tyler & Seliger, 1978; Tester & Steidinger, 1997). Certain 

blooming genera have species that produce toxins which are fatal for fishes and invertebrates 

(Burkholder et al., 1995); other are not-toxin producing but the very high biomass results in 

low oxygen waters and subsequent fish mortality (Kudela et al., 2005).
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Most ciliates are naked (aloricate), though some groups form a more or less robust lorica 

(loricate, like tintinnids). Aloricate ciliates make up the bulk of the ciliate community in the 

pelagial (Petz, 1999). Ciliates are characterized by having two kinds of nuclei: a micro- and a 

macronucleus (Cavalcanti et al., 2005). The macronucleus mediates the day-to-day 

functioning of the cell, and the micronucleus, of which there may be more than one, contains 

the chromosomes and is involved in the sexual processes (conjugation, autogamy, cytogamy) 

undergone by ciliates. They also have few to many cilia or compound ciliary organelles which 

are used for locomotion and for creating currents which bring food particles to their mouths. 

Among the ciliates, heterotrophic, autotrophic or mixotrophic forms can be found.  

Small metazoans (developmental stages of calanoid and cyclopoid copepods) have been 

shown to feed on a variety of prey types, including bacterioplankton (Roff et al., 1995), small 

sized phytoplankton (Berggreen et al., 1988) as well as protists (Merell & Stoecker, 1998; 

Lonsdale et al., 2000), and detritus (Green et al., 1992). While the developmental stages of 

cyclopoid copepods are strict ambush, raptorial feeders, relying on mechano-reception, those 

of calanoid copepods can also create a feeding current and, therefore, switch to suspension 

feeding (Svensen & Kiørboe 2000; Saiz et al., 2003). In general, protists dominate the 

microplankton, although small metazoans can be the most abundant component in this 

fraction (Brownlee & Jacobs, 1987 fide White & Roman, 1992).  

Whereas micro-heterotrophs are effective consumers of prey from as small as bacteria to 

organisms larger than themselves, the diet of nano-heterotrophs is usually restricted to 

bacteria sized organisms. Both are important regulators of bacterial and phytoplankton 

production (McManus & Fuhrmann, 1988), as well as of the remineralization of organic 

matter and nutrients in the euphotic zone (Azam et al., 1983; Sherr & Sherr, 2000). They are 

capable of responding quickly to changes in food supply (Verity et al., 1992) and, therefore, 

maintain a close coupling between production and consumption in the euphotic zone. 

Furthermore, micro-heterotrophs represent a link in the transfer of matter and energy between 

the “microbial loop” and the higher trophic levels of the pelagic food web and their relevance 

in doing so is well accepted for a variety of marine ecosystems (e.g. Gifford, 1988; Paranjape, 

1990; Azam et al., 1991; Sherr & Sherr, 1992; Neuer & Cowles, 1994; Landry et al., 1995; 

García-Pámanes & Lara Lara, 2001; Calbet & Landry, 2004; Strom et al., 2007). 

Nevertheless, the microbial food web and the role of micro-grazers in coastal upwelling areas, 

especially in the HCS, has been poorly studied and understood until most recent (Calbet & 

Landry, 2004). 
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1.2. Background knowledge on the microbial food web in the coastal upwelling area off 

Concepción, central Chile 

Coastal upwelling areas represent about 1% of the ocean’s area, are extremely productive, and 

contribute remarkable (67%) to the global new production of the world’s ocean (Chavez & 

Toggweiler, 1995) coastal regions of the Humboldt Current System (HCS) off Peru and Chile 

are well known for the upwelling of deep, high nutrient and CO2, and low temperature and 

oxygen waters (Strub et al., 1998), resulting in high autotrophic production (Montecino et al.,

2006). This production is either channelled through the food web or exported to the deep 

ocean and/or to adjacent oceanic areas. For a long time it was assumed that the autotrophic 

production in upwelling areas, largely dominated by chain-forming diatoms, was efficiently 

channelled onto higher trophic levels through a simple, herbivorous food chain (Ryther, 

1969). Export from the euphotic zone as intact cells, faecal pellets, detritus, or marine snow 

was also thought to be important in terms of carbon flow (Legendre & Le Fèvre, 1995). Until 

recently, little attention was paid to the potential role of the microbial food web structure and 

functioning in these areas although earlier studies in the Peruvian upwelling system had 

documented high abundances of heterotrophic microbes in the water column (Beers et al.,

1971; Sorokin, 1978; Sorokin & Kogelschatz, 1979). The importance of small-sized 

autotrophs in primary production and in mediating carbon flux in coastal upwelling areas was 

also stressed earlier in the Benguela upwelling system (e.g. Probyn, 1992; Painting et al.,

1992; Brink et al., 1995). Only recently, this has been the case for the HCS (Iriarte et al.,

2000; Vargas & González, 2004; Vargas et al., 2007).

The central-southern zone of the HCS off Concepción, central Chile (33 - 38°S; Figure 2), is 

characterized by an irregular coastline, including semi-enclosed coastal systems (bays of 

Coliumo, Concepción, San Vicente and Arauco Gulf). The continental margin off Concepción 

is the widest shelf along the HCS (up to 90km from the coast) and interrupted by a complex 

submarine topography (Sobarzo, 2002) associated with the Itata and Bio-Bio rivers. 

Consequently, river runoff is quite important in this area and low salinity waters can extend 

way offshore during the winter/early spring period (Strub et al., 1998); mesoscale structures 

(e.g. filaments, eddies, upwelling plumes) are common features in the coastal transition zone 

(Montecino et al., 2004). The area is recognized for its high biological productivity (Daneri et 

al., 2000; Montecino et al., 2006), which sustains one of the largest fisheries in the world 

(annual fish catch of over 7 million t); some of the highest primary production rates (PP; ~ 4 - 

20 g C m-2 d-1) in the world’s oceans (Daneri et al., 2000) have been estimated there, making 

it one of the most productive among all of them. 
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This high productivity is mainly supported by the seasonal (spring and summer) dominance of 

S-SW winds during the austral spring-summer period (Figure 3) that force the upwelling of 

nutrient-repleted Equatorial Subsurface Waters (ESSW; Strub et al., 1998), fertilizing the 

photic zone and enhancing new production. In winter (austral autumn/winter period), the 

weakening of the South Pacific anticyclone produces a wind pattern less favourable to 

upwelling, and this, coupled with a reduced light field, decreases the system’s productivity in 

winter, although values of PP found during this period are relatively high anyways (530 - 

1529 mg C d-2 d-1; Montecino et al., 2006; Vargas et al., 2007).

Trophic relationships within the microbial food web in upwelling systems remain poorly 

understood and in this context, the Centre for Oceanographic Research in the eastern South 

Pacific (COPAS), University of Concepción, proposed a line of research involving several 

studies referred to the microbial food web and its impact on the carbon flow in the area off 

Concepción. So far, attempts have been made to evaluate the general structure of microbial 

assemblages (Anabalón et al., in press; González et al., in press; Morales et al., in press) and 

of their impact upon carbon flux (Grünewald et al., 2002; Troncoso et al., 2003; Cuevas et al.,

2004; Vargas et al., 2007; Montero et al., in press).

The dominant diatom genera in the coastal zone (Skeletonema, Thalassiosira, and 

Chaetoceros; Figure 4) are well adapted to the highly turbulent, nutrient-replete environment 

and a clear seasonality near the surface in their abundance occurs, with maxima abundance 
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Figure 2. Study area of the coastal upwelling area off Concepción, central  Chile

Figure 3. Northern component of wind velocity (equatorward) 
of  the study area  between August 2004 to July 2006) 
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and biomass during the summer upwelling period (Vargas et al., 2007; Anabalón et al., in

press; González et al., in press) together with highest concentrations of Chl-a (Morales et al.,

in press).

Figure 4. Digital photographs of some of the nano- and microplanktonic primary producers (a-c fixed with 
Lugol´s solution, d-f = stained with DAPI) found at the shelf off Concepción, Chile: a = Skeletonema spp., b = 
Chaetoceros spp., c = Thalassisoira spp., d-f = unidentified autotrophic flagellates; g = Cryptophyceae; e = 
unidentified autotrophic dinoflagellate; i = solitary form of Thalassiosira minsucula.

Anabalón et al. (in press) combined the analysis of nano- and microplankton fractions (Figure 

4) and stressed the co-occurrence in abundance maxima of both during the productive, 

upwelling period. This co-occurrence does not reflect the typical picture observed in coastal 

upwelling areas, with intense spring-summer blooms of diatoms followed by flagellates (e.g.

Brink et al., 1995; Tilstone et al., 2000) but indicates the importance of the nanoplanktonic 

fraction as a dominant component in the coastal area of the upwelling region off Concepción, 

contributing to maintain the system’s production. Among the micro-heterotrophs, Gonzalez et

al. (in press) found Protoperidinium (Figure 5a), Dinophysis (Figure 5b) as well as Ceratium

to be the dominant dinoflagellates. Tintinnids are the most common ciliates, including 

Codonellopsis (Figure 5c), Helicostomella (Figure 5d), and Tintinnopsis. Both tintinnids and 

dinoflagellates peak during the same period or shifted slightly after diatoms attained their 

maximum.  

Figure 5. Digital photographs of some of the typical micro-heterotrophs in the upwelling area off Concepción: a 
= Protoperdinium,  b = Dinophysis, c = Codonellopsis, d= Helicostomella (all fixed with Lugol’s solution). 
Photographs b-d were provided by V. Anabalón (COPAS).

In terms of the carbon flux via microbial pathways, it has been shown that a significant 

proportion of the organic matter produced by phytoplankton is channelled through bacteria 

(Troncoso et al., 2003; Cuevas et al., 2004). Furthermore, Cuevas et al. (2004) predicted that 

d)

e) g)

h)

i)
a) b) c)

f)

a) c) d)b)
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during upwelling period, the heterotrophic nanoflagellates incorporate only a small fraction (< 

5%) of the bacterial production but that they are able to control it (>100%) during non-

upwelling period. In addition, a recent study by Vargas et al. (2007), on the relative 

importance of microbial and classical pathway of carbon in the highly productive area off 

Concepción, indicated that a large part of the PP (13 - 84%) is channelled through the 

microbial food web and, in comparison, only a small fraction directly to copepods via the 

herbivorous food chain (1 - 6%). Carbon flux estimates for the coastal zone off Concepción 

during the upwelling (1040 mg C m-2 d-1) and non-upwelling (230 mg C m-2 d-1) seasons on 

the one hand point out that there is a significant vertical export of POC, representing 31 and 

15% of the PP, respectively (Grünewald et al., 2002). In addition, Gonzalez et al. (in press)

reported recently that, on the average, 17% (range 2 - 67%) of the generated PP on the shelf of 

Concepción was exported below 50 m depth with Thalassiosira > Chaetoceros > Skeletonema

appearing as the most important contributors of the sedimenting diatom-carbon on an annual 

basis (20%, 11%, 9%, respectively). Consequently, they play an essential role in the coupling 

between the productive upper layer and sediments in the system under study. Vargas et al.

(2007), on the other hand, showed that during upwelling only 3 to 4% of the PP is 

sedimented; furthermore, Morales et al. (in press) stressed that autotrophic production might 

also be exported to adjacent oceanic areas via filaments and eddies. 

Still there are various aspects, from the taxonomical to the ecological views, that require 

further research and many questions remain to be answered on the food webs in the upwelling 

area in the HCS. Is most of the photosynthetically fixed carbon effectively channelled through 

the microbial food web? Does grazing by micro-organisms play an important role in vertical 

carbon export? Is the micro-heterotrophic pathway an important trophic link in highly 

productive upwelling systems and how is the food-web structured in these areas? Overall, we 

need to improve the understanding of the role of micro-organisms in the highly productive 

waters of the HCS and their impact on primary production, nutrient recycling, as well as on 

secondary production in terms of interlinking bacterial production with higher trophic levels. 
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2. Thesis objectives and outline 

This thesis attempts to understand the role and relevance of trophic interactions in the 

microbial food web of the highly productive coastal system off central Chile (~36°S). In this 

context, the following five questions were developed as an integral part of the investigation of 

the COPAS Center through the Research Program #3 on “Plankton communities: structure, 

trophic and metabolic processes”: 

I. What is the dominant structure of nanoplanktonic assemblages on the shelf off Concepción 

and how does it vary under upwelling and non-upwelling conditions?  

II. To what extent nano-heterotrophic grazers control picoplanktonic prokaryotes? 

III. How important is microzooplankton (2 - 200 μm) in channelling primary production 

during the non-upwelling period? 

IV. What is the trophic role of microplanktonic metazoans in the system under study?  

V. How important is the carbon flow from autotrophic and/or heterotrophic sources through 

the microbial food web? 

The questions are addressed in the framework of three scientific contributions that have been 

already published, are in press or recently submitted to scientific journals. The first of the 

above addressed questions is explored in Publication 1. As part of a multidisciplinary, time 

series station at the shelf off Concepción, central Chile, the analysis of the composition, 

abundance and biomass of nanoplankton communities was of interest since the structure and 

functioning of nanoplanktonic assemblages in this coastal upwelling area had been 

overlooked in the assessments of the productivity of upwelling areas in general. A specific 

objective was to elucidate the temporal variability of these assemblages, as the system of 

study is exposed to different hydrographic conditions during an annual cycle; intense 

upwelling of equatorial subsurface water and increased solar radiation during the austral 

spring/summer period, and river influx and precipitation during the austral autumn/winter 

period. Another specific objective, alluded in the second question, was to investigate the 

grazing potential of nano-heterotrophic grazers (nanoflagellates and nanodinoflagellates; HNF 

and HND, respectively) on prokaryotic prey assemblages (autotrophic and heterotrophic 

bacteria). The aim was, on one hand, to evaluate the role of HND as bacterial-grazers, group 

to which little attention has been paid compared to the HNF. On the other hand, the grazing 

impact of both, HND and HNF, on prokaryotes was explored with respect to varying 

environmental conditions (upwelling and non-upwelling).   
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Micro-heterotrophs are assumed to have a significant grazing impact on nano- and 

microphytoplankton and, thereby, channel a large proportion of the PP to higher trophic 

levels, a theme addressed in the third question. Publication 2 focuses on the grazing impact 

of micro-heterotrophs (2 - 200 μm) on PP during the autumn/winter, non-upwelling period off 

Concepción. The grazing of a micro-heterotrophic metazoan component (nauplii of Oithona

spp.) in the upwelling area off Concepción was also investigated (4th question). The few 

reports available on the feeding of copepod nauplii indicate that they feed on a variety of prey 

types but grazing rates data are scarce.  Results on the feeding and trophic role of Oithona

spp. nauplii in the system under study is addressed in Publication 3, including diet

composition, ingestion rates, food-type preferences, and an assessment of their potential in 

controlling prey populations of different size fraction is presented.

Each of the previous described publications (Publication 1, 2, and 3) discusses the 

importance of the carbon flow from autotrophic and/or heterotrophic sources through 

microbial pathways and, altogether, are included in the last question (question 5). In the 

coastal upwelling system of Concepción, carbon fixed by primary producers is transferred 

trough both, ‘classical’ and ‘microbial’ pathways but the proportion directed through each of 

these two pathways depends largely on the size of the primary producers, components that 

display a strong seasonality in their abundance and biomass in  this area. The evidence 

provided in this thesis, and most recent studies in the area, implies that the microbial food 

web is a fundamental and, most probably, a permanent trophic pathway in this upwelling 

system (Publication 1, 2, and 3).
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The three scientific contributions resulting from this thesis are either published, in press or 

submitted, and are listed below: 

Publication 1

Böttjer D, Morales CE (in press) Nanoplanktonic assemblages in the upwelling area off 

Concepción (~36°S), Central Chile: abundance, biomass and grazing potential during the 

annual cycle. Progress in Oceanography, doi:10.1016/j.pocean.2007.08.024 

• All nanoplankton analysis/data were contributed by D. Böttjer. Picoplankton, hydrographic 

and nitrate data were provided by Dr. O. Ulloa, Dr. W. Schneider and M.A. Varas. The 

manuscript was written by D. Böttjer under the supervision of C.E. Morales. 

Publication 2

Böttjer D, Morales CE (2005) Microzooplankton grazing in a coastal embayment off  

Concepción, Chile, (~36°S) during non-upwelling conditions. Journal of Plankton Research

27(4): 383-391 

• Experiments and data analysis were carried out by D. Böttjer. The manuscript was prepared 

by D. Böttjer and C.E. Morales. 

Publication 3

Böttjer D, Morales CE, Bathmann U (submitted) Are small cyclopoid copepod nauplii 

(Oithona spp.) important grazers in the highly productive, upwelling system off central Chile?  

Limnology and Oceanography

• Experiments were carried out by D. Böttjer and the data were evaluated in conjunction with 

C.E. Morales. The manuscript was prepared by D. Böttjer in collaboration with the co-

authors.

In the next section (section 3) the methodological approaches applied in the framework of this 

thesis are briefly introduced, including a theoretical background and practical application. 

Following that (section 4), the three scientific contributions are provided before coming to the 

general discussion of this dissertation (section 5), where the most important findings of this 

thesis are linked into a broader spectrum of knowledge and the understanding of the carbon 

flow in the coastal upwelling area off central Chile is re-evaluated.   
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3. Methods 

3.1. Structure of nanoplanktonic assemblages 

Theory

Seasonal variations (upwelling and non-upwelling) in the abundance and biomass of 

nanoplanktonic assemblages are assessed by epifluorescence microscopy (Davis & Sieburth, 

1982; Caron, 1983). The basic function of a fluorescence microscope is to irradiate the 

specimen with a specific wavelength band (excitation), and to assess the emitted fluorescence. 

In a properly configured microscope, only the emission light should reach the eye or detector 

so that the resulting fluorescent structures are superimposed with high contrast against a very 

dark (or black) background. The light seen is the fluorescence from the specimen that has 

been stained with a specific fluorochrome and in some cases is also derived from 

autofluorochrome from phototrophic pigments. The fluorochromes (e.g. DAPI, Proflavin, 

Syber-Green) are stains that attach themselves to visible or sub-visible structures, and are 

often highly specific in their attachment target.

Practical application

In order to enumerate the different taxonomic groups of the nanoplanktonic assemblages 

(flagellates, dinoflagellates, diatoms, and ciliates) for subsequent abundance calculation, 20 

mL of collected samples are stained (DAPI= 4',6-diamidino-2-phenylindole at a final 

concentration of 0.01%; Porter & Feigh, 1980) and filtered onto black polycarbonate 

membrane filters (0.8 μm pore size). Samples are frozen and stored at -20°C in the dark until 

analysis. Filters are examined with a Nikon® TE2000S (T-FL Epi-Fl) microscope, equipped 

with a digital camera (Nikon® Coolpix 4500), using UV, blue, or multiple excitation (NIKON 

Filter Blocks DAPI UV-2E/C, NB-2A, and DAPI/FITC/TRITC) at a magnification of 1000x. 

Total counts vary depending on sampling time and depth but at least 75 nanoplanktonic 

organisms are enumerated in each sample. Heterotrophic and autotrophic forms (flagellates, 

dinoflagellates and ciliates) are counted separately, assuming that those displaying 

autofluorescence were autotrophic or mixotrophic cells. Mean cell sizes of the most common 

specimens representing the different taxonomic groups are measured using the software 

Image Pro Plus® (Version 4.5). Carbon biomass estimates are derived from measured cell 

dimensions, calculated cell volumes using appropriate geometric formulae (Chrzanowski & 

Simek, 1990; Sun & Lui, 2003), and by applying literature-derived carbon to volume ratios 

for different taxonomic groups. Flagellate cell volumes are converted to carbon biomass using 
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a factor of 220 fg C μm-3 (Børsheim & Bratbak, 1987), whereas the remaining nanoplanktonic 

cell volumes are converted using the carbon to volume relationships given by Menden-Deuer 

& Lessard (2000): for diatoms, log10 pg C cell-1 = -0.541 + 0.811 x log10 volume (μm3); for 

dinoflagellates, log10 pg C cell-1 = -0.353 + 0.864 x log10 volume (μm3); and for ciliates, log10

pg C cell-1 = -0.639 + 0.984 x log10 volume (μm3).

3.2. Grazing rate estimates 

A variety of approaches has been developed for the estimation of micro- and 

nanoheterotrophic grazing, all including different advantages and disadvantages (Båmstedt et

al., 2000). Grazing rate estimates are either expressed at the level of individual organisms or 

as entire assemblage depending on the method used and the analysis performed.  

3.2.1. Microheterotrophic grazing – community estimates using the dilution method

Theory

Microzooplankton grazing rates can be estimated with the seawater dilution method (Landry 

& Hasset, 1982), which originally only used chlorophyll-a as a tracer, of food consumed by 

herbivores but later extended to estimate grazing on bacteria and cyanobacteria (Cambpell & 

Carpenter, 1986). This technique is based on the experimental decrease of the encounter rate 

of predators and prey by diluting natural seawater with filtered seawater from the same 

source. Grazing rates are expected to be lower in the most diluted treatment compared with 

less diluted and undiluted treatments. Changes in prey density after the incubation are usually 

expressed by an exponential growth model: 

Pt = Poe (k-g)    

or

1/t ln (Pt/Po) = k – g = μ     

with Po and Pt = phytoplankton concentrations at the beginning and at the end of the 

experiment (mg Chl-a m-3), t= incubation time (h-1), k= instantaneous algae growth coefficient 

(d-1) and g= instantaneous  grazing coefficient (d-1). The growth and grazing coefficients are 

calculated from a linear regression of the apparent growth rate (μ) plotted against the different 

dilution factors. The slope of this relationship represents g, and the y-intercept k. The net rate 

of change in the phytoplankton density is expected to be linearly and negatively related to the 

dilution factor.
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Practical application 

Sample water, collected in the coastal zone off Concepción, is gently sieved by <200 μm or 

125 μm in order to remove large grazers. One part of this water is filtered through a 0.8 μm 

prefilter followed by a 0.2 μm filter to obtain particle-free seawater; the remaining part is kept 

as unfiltered seawater. Subsequently, dilutions of filtered and unfiltered seawater at different 

proportions are prepared (e.g. 15, 30, 45, 60, and 100%), enriched with nitrate (final 

concentration of 5 μM) and phosphate (final concentration of 1 μM) and distributed in 

experimental bottles (polycarbonate). Triplicates are incubated for 48 h on a plankton rotation 

wheel (0.5 r.p.m.) at 12 h light: dark cycles. Measurements of chlorophyll-a are used to 

estimate Po and Pt in all bottles in order to estimate the prey density changes during the 

incubations. For this purpose, subsamples of 100 ml are collected for subsequent Chl-a

determination by fluorometry (Holm-Hansen et al., 1965), and in addition, aliquots of 50 mL 

are sedimentated in Utermöhl chambers (Utermöhl, 1958) for microscopic analysis. 

3.2.2. Microheterotrophic grazing – species-specific estimates using the traditional bottle 

incubation method 

Theory

Species-specific grazing rates are carried out following a standard protocol for bottle 

incubations (Gifford, 1993) including sampling of the offered food at the beginning (t1) and 

end (t2) of the incubation period. Clearance and ingestion rates are assessed from changes in 

Chl-a concentrations (as total) and/or cell abundance per prey type at the beginning and end 

of the incubations without (control) and with grazers (experimental), following Frost (1972). 

The instantaneous growth coefficient of the prey (k, d-1) is obtained from the changes in prey 

concentration (C, in mg Chl-a m-3 or cells mL-1) in the control treatments at time t1 (C1) and t2

(C2) of the incubation: 
)(

12
12 ttkeCC

The instantaneous grazing coefficient (g, d-1) is calculated from: 
))((

1
*
2

12 ttgkeCC

where *
2C  is the prey concentration at t2 in the treatment containing the grazers. A mean food 

concentration C , expressed in terms of Chl-a concentration, cell numbers or biomass, is 

calculated from: 

))(/()1( 12
))((

1
12 gktteCC ttgk
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The clearance rate (F = volume cleared copepod-1 time-1) is obtained from the volume of the 

incubation bottle (V, in mL) and the copepod density in each bottle (N):

NgVF /

The ingestion rate (I = food concentration or biomass copepod-1 time-1) is calculated from: 

CFI

Practical realization 

Adult Oithona spp. (O. nana and O. similis) females with egg sacs are collected by gentle 

vertical hauls from 0 - 10 m depth in the coastal area off Concepción and incubated with food 

(natural seawater screened through 100 μm) until they produce a sufficient number of 

naupliar stages. The freshly hatched nauplii are separated from the females and kept in water 

plus the food type offered in the subsequent experiment until they reached naupliar stages 

NIII - NV (120 - 165 μm length). A sufficient number (21 - 60) is then incubated with 

different natural food assemblages (<3, <20, <100 and <125 μm) or cultured Isochrysis 

galbana for 24 h in a rotating wheel, and under a 12:12 h light: dark cycle. Three replicate 

bottles (500 mL) per condition are used in each experiment. The initial food samples in the 

controls are collected after 1 h incubation for the analyses of micro- nano- and/or 

picoplankton abundances, as well as for total Chl-a concentration. At the end of the 

incubations, samples from the control and grazing bottles are collected and treated as 

described above. Chl-a is determined by fluorometry (Holm-Hansen et al., 1965), micro-, 

nano- and/or picoplankton samples are analysed by inverted and epifluorescence microscopy 

(Utermöhl, 1958; Davis & Sieburth, 1982). 

3.2.3. Nanoheterotrophic grazing- estimates using a generic model 

Theory

Nanoheterotrophic grazing rates are assessed using a generic model approach that predicts 

protistan grazing (Peters, 1994). Potential grazing rates (GR, number of prey predator-1 h-1) are 

estimated from coefficients which are derived from a large data set covering freshwater and 

marine environments. The model includes the variables temperature (T, ºC), cell volumes (V,

μm3) and abundances (C, cells mL-1) of both the prey (PY) and predators (PD):

ln GR = -2.701 – 0.344 ln(VPY) + 0.477 ln(VPD) + 0.489 ln(CPY) – 0.270 ln(CPD) + 0.033T
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Practical realization 

Predator abundances (heterotrophic nanoflagellates and nanodinoflagellates) are obtained 

from epiflourescence microscopy analysis (Davies & Sieburth, 1982). For this purpose, 20 

mL of collected sample (unsieved seawater from selected depths) are stained with DAPI (4',6-

diamidino-2-phenylindole) at a final concentration of 0.01% (Porter & Feigh, 1980), and are 

filtered onto black polycarbonate membrane filters of 0.8 μm pore size (filters can be stored at 

-20°C in the dark until microscopic analysis). Filters are examined with the same microscope 

and magnification as described in section 3.1. Mean cell sizes of the heterotrophic 

nanoflagellate and dinoflagellate are measured using the software Image Pro Plus® (Version 

4.5) for subsequent estimation of the cell volumes using appropriate geometric formulae (Sun 

& Lui, 2003). 

Samples for prey (bacterioplankton and cyanobacteria) abundance estimation are fixed 

immediately after collection with freshly prepared para-formaldehyde (0.1% final 

concentration), stored frozen and subsequently analysed by flow cytometry  (Becton-

Dickinson® FACScalibur flow cytometer; flow rate: 28-32 μL min-1; >10,000 events counted) 

using SYBR-Green I for bacterial counts and forward scatter, side scatter, and orange 

(phycoerythrin) and red fluorescence (chlorophyll) for cyanobacterial counts. Cell volumes of 

bacterioplankton are based on those reported for samples taken in the area off Concepción 

(Cuevas et al., 2004) and cyanobacteria cell volumes are derived from the same samples and 

in the same way as described for predators. 
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ABSTRACT 

Copepod grazing impact on planktonic communities has been commonly underestimated due to 

the lack of information on nauplii feeding behaviour and ingestion rates. The trophic role of 

nauplii of the cyclopoid copepod Oithona spp., a numerically dominant component of the 

metazoan microzooplankton in the coastal upwelling area off Concepción (central Chile, ~36ºS), 

was investigated during the highly productive, upwelling season. Diet composition, ingestion rates, 

and food-type preferences were assessed through grazing experiments with: a) different size 

fractions of natural planktonic assemblages (<3, <20, <100 and <125 μm), and b) cultures of the 

nanoflagellate Isochrysis galbana. Under natural concentrations of nano- and microplankton, the

nauplii ingested nanoflagellates, small-sized dinoflagellates, and diatoms in solitary form (range: 5 

- 73 x 103 cells nauplii-1 d-1). Under a mixture of pico- and nanoplankton, the nauplii ingested 

mainly nanoflagellates (9 - 17 x 103 cells nauplii-1 d-1) but picoplankton was also ingested when it 

was the solely food available (5 - 18 x 106 cells nauplii-1 d-1). Ingestion rates on I. galbana (28 - 31 

x 103 cells nauplii-1 d-1) were in the range of those estimated for natural nanoflagellates. Carbon 

uptake by the Oithona nauplii was mainly derive d from the nanoflagellates (mean of 350 ng C 

nauplii-1 d-1). At highest abundance levels of the nauplii in the system under study, their daily 

grazing impacts on the prey standing stocks range from <21% for picoplankton, 2 - 68% for 

nanoflagellates (mean = 34%), <24% for dinoflagellates, and <13% for diatoms. These results 

suggest that Oithona spp. nauplii exert a significant control on the abundances of the nanoplankton 

assemblages and, thereby, represent an important trophic intermediate between the classical and 

microbial food webs in this coastal upwelling system.  

KEY WORDS: Oithona nauplii, cyclopoid copepods, microzooplankton grazing, coastal 

upwelling
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INTRODUCTION

   Small cyclopoid copepods of the genera Oithona (<1 mm in length) are ubiquitous and one 

of the most abundant copepods in the world’s ocean (Gallienne and Robins 2001; Turner 

2004). Compared to the large calanoids, the knowledge of the biology and ecology of the 

small cyplopoids, and on their trophodynamic and biogeochemical roles in pelagic systems, is 

minimal (Paffenhöfer 1993 and references therein). In the case of Oithona species, trophic 

studies have been concentrated mostly on the feeding rates of adults and most of this 

information has been derived from laboratory studies based on limited diet offers of cultured 

organisms (e.g. Lampitt and Gamble 1982; Nakamura and Turner 1987; Lonsdale et al. 2000; 

Castellani et al. 2005). In general, copepod nauplii are expected to exhibit a different feeding 

behaviour than copepodites and adults (Paffenhöfer and Lewis 1989) but, due to the lack of 

information on nauplii feeding, the assessments of copepod grazing impacts on planktonic 

communities has been commonly underestimated (Fessenden and Cowles 1994). 

   The optimal food cell size for copepods is related to their body size, with small copepods 

ingesting nano- and picoplankton more efficiently than large copepods (Berggreen et al. 1988; 

Webber and Roff 1995). The classical view of copepods feeding mainly on diatoms has been 

questioned as being too simple to describe their trophic interactions (e.g. Paffenhöfer et al. 

2005) and today, herbivorous protists are considered to constitute their main food (see review 

of Stoecker and Capuzzo 1990). Moreover, preferences for motile to non-motile prey types 

have been observed for Oithona spp. (Turner and Graneli 1992, Svensen and Kiørboe 2000; 

Paffenhöfer and Mazzocchi 2002). The few reports available on the feeding of copepod 

nauplii indicate that they feed on a variety of prey types, including bacterioplankton (Roff et 

al. 1995), small sized phytoplankton (e.g. Berggreen et al. 1988) as well as protists (e.g. 

Merell and Stoecker 1998; Lonsdale et al. 2000; Turner et al. 2001), and detritus (Green et al. 

1992). In turn, they are prey items for larval fish (e.g. Conway et al. 1998), heterotrophic 

protists (Jeong 1994) and mesozooplankton (Bonnet et al. 2004) and, on this basis, they are 

considered as an important link between the microbial and classical food chains.

   In the productive upwelling system off Concepción, central Chile, Oithona spp. (mostly O. 

similis and O. nana) is a common component of the coastal zooplankton (Escribano et al. in 

press) and it appears to reproduce throughout the year (Torres 2006). The latter implies that 

the nauplii experience adequate food quantity and/or quality for their development even when 

seasonal differences in primary production and chlorophyll-a concentration occur (Montecino 

et al. 2004; González et al. in press; Morales et al. in press). However, the feeding behaviour 
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and grazing rates of these oithonids in this upwellling system remains unexplored. Moreover, 

there is only one previous study which describes the grazing rates of adult Oithona species 

inhabiting the Humboldt Current System (northern upwelling region off Chile; Vargas and 

Gonzalez 2004a).

   Most of the naupliar stages of Oithona species in the Concepción upwelling area are smaller 

than 200 μm (NI to NVI in O. nana and NI to NV in O. similis) and, therefore, constitute part 

of the microzooplankton size fraction. In this area, micro-grazers (20 - 200 μm) can exert a 

high grazing impact (>100%) on the potential primary production during the non-upwelling 

condition, when the pico- and nano-size fractions are the most abundant components of the 

planktonic assemblages (Böttjer and Morales 2005). Since the Oithona nauplii appear to be a 

regular component in the area (Torres 2006), and given that the pico- and nanoplankton 

assemblages display low seasonal abundance variation in this strongly seasonal environment 

(Böttjer and Morales in press), we propose that the Oithona spp. nauplii exert a high and 

permanent grazing pressure upon the abundance/biomass of microbial assemblages and, 

thereby, probably act as an important link in channelling organic carbon to higher trophic 

levels. To test this, nauplii grazing experiments were performed during the upwelling period, 

using both natural assemblages and cultured cells as food.

MATERIAL AND METHODS 

Field collection of copepods and acquisition of naupliar stages 

   Plankton samples were taken at the mouth of Coliumo Bay (36°32` S, 72°56`W), central 

Chile, during the upwelling season (austral spring-summer 2004, 2005, 2006, and 2007). 

Copepods were collected by slow horizontal hauls from 0 to 10 m depth using a WP-2 

plankton net (mesh size 200 μm) fitted with a non-filtering cod-end. These samples were 

immediately diluted with surface seawater, placed in thermo-boxes and transported within 1 h 

after collection to the laboratory of the Marine Biological Station in Dichato. In the same 

location, water for the subsequent incubation of the adult females of Oithona spp. was 

sampled (Niskin bottles; General Oceanic Model 1010, equipped with interior rubber-coated 

springs) and the surface temperature was measured. Once in the laboratory, the samples were 

maintained in a cold room at the appropriate in situ water temperature (Table 1) for a couple 

of hours until the completion of sample processing.  
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   For the acquisition of nauplii, undamaged adult females of Oithona spp. and especially 

those carrying ovigerous sacs (Fig. 1a and b), were sorted out from the field samples using a 

stereomicroscope (Zeiss Stemi 2000-C). The selected females (~100 - 150 individuals) plus 

natural food (natural seawater screened through 100 μm) were haltered in 1 L glass beakers 

(~30 females per beaker) until they produced nauplii. These incubations, as well as those of 

the grazing experiments, were maintained at in situ temperature (11.3 - 12.2°C) and irradiance 

of 110 μmole photon m-2 s-1 on a 12:12 light:dark cycle. The water + food contained in each 

beaker were completely changed daily and eggs, freshly hatched nauplii, and dead females 

were removed. The naupliar stages of Oithona spp. were identified according to their length 

and characterizations provided by Murphy (1923), Gibbons and Oglivie (1933), and Haq 

(1965). The eggs and nauplii obtained were then incubated in separate containers (eggs were 

kept in filtered seawater (<0.2 μm) and the nauplii in water + the food type offered in the 

subsequent experiment) until a sufficient number (21 - 60) of NIV and NV stages of O. nana

(size range: 120 - 145 μm; Fig. 1c and 1d) and/or NIII and NIV of O. similis (size range: 140 - 

165 μm) was achieved to start the grazing experiments. 

Collection and preparation of food 

   Natural plankton assemblages were offered in 14 and cultured microalgae in 3 experiments 

(Table 1). The natural food was collected on the same day before starting the grazing 

experiments, from the same site where the adult copepods had been collected before. For this 

purpose, the water was sampled at 5 m using 10 L Niskin bottles. Immediately after 

collection, this water was brought to the Marine Biological Station in Dichato and maintained 

in the same cold room as the copepods. Immediately, the collected water was screened 

through an appropriate mesh size, according to the selected food type treatment (<125, <100, 

<20 or <3 μm; Table 1), and directly transferred to clean, acid-washed, polyethylene 

containers (10 L) using silicone tubing. In the experiments with cultured food, the 

nanoflagellate Isochrysis galbana (~5 μm in length) was used in the exponential phase of 

growth. In each case, 3 mL of the microalgae were added to each of the experimental beakers 

(500 mL) containing filtered seawater <0.2 μm.  

Grazing experiments 

   The grazing incubations were carried out following a standard protocol (Gifford 1993), 

including sampling of the food at the beginning (t1) and end (t2) of the incubation period. A 

total of 9 bottles were used in each experiment: 6 as controls (3 for t1, 3 for t2), containing 
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only the prey, and 3 as grazing treatments, including the prey and a known density of nauplii 

(Table 1). All the incubation bottles (500 mL) were filled to the top and sealed with 

parafilm© to avoid the production of air bubbles which might damage the fragile organisms. 

These bottles were placed on a rotation wheel (~0.5 r.p.m.) to keep the food and nauplii in 

suspension, and incubated for ~24 h under the light and temperature conditions described 

before. The initial food samples in the controls were collected after 1 h incubation and 

included the analyses of micro-, nano-, and/or picoplankton cells, as well as total Chl-a. For 

microplankton, 100 mL samples were preserved with Lugol (5% final concentration) and 

stored in the cold and dark. Samples for nano- and picoplankton (20 and 10 mL, respectively) 

were preserved with Glutaraldehyde (2% final concentration) and stored as the microplankton 

samples. For Chl-a analysis, triplicate 100 mL samples were filtered onto fibreglass GF/F 

filters and frozen; these filters were extracted in 10 mL 90% Acetone for ~24 h and the 

fluorescence was measured using a Turner Designs TD-700 Fluorometer (Holm-Hansen et al. 

1965). At the end of the incubations, samples from the control and grazing bottles were 

collected and treated as described above.  

Food cell counts and carbon content

      Micro- and nanoplanktonic cells in samples from experiments 1 to 6 (Table 1) were 

analysed with an inverted microscope (Nikon® TE2000S) equipped with a digital camera 

(Nikon® Coolpix 4500). For this purpose, 50 mL of the preserved samples were concentrated 

in settling chambers for at least 24 h (Utermöhl 1958). Cells were enumerated at 400x or 

1000x magnification and categorized into main groups (e.g. nanoflagellates, diatoms, 

dinoflagellates and ciliates); in the case of chain-forming diatoms, the counts refer to the 

number of cells contained in each chain. The nanoflagellates and dinoflagellates were also 

distinguished according to size categories (nanoflagellates: 2 - 5, 5 - 10, and 10 - 15 μm; 

dinoflagellates: <10, 11 - 19, 20 - 39, 40 - 59, and 60 - 99 μm). At least 150 cells in each 

taxon were counted. In these experiments (1 to 6), the picoplankton size fraction was included 

in the water but not in the analyses as it was initially assumed that this fraction was not part of 

the food size range available for the nauplii; this assumption however was tested in 

subsequent experiments. 

   For the analyses of pico- and nanoplankton samples in experiments 7 to 14 (Table 1), 

subsamples of 3 mL (picoplankton) and 20 mL (nanoplankton) were stained with DAPI (4',6-

diamidino-2-phenylindole), at a final concentration of 0.01% (Porter and Feigh 1980), and 

filtered onto black polycarbonate membrane filters (0.2 μm for picoplankton and 0.8 μm for 
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nanoplankton), supported underneath by 0.45 μm membrane filters. The filters with samples 

were then stored at –20°C in the dark until analysis. These samples were examined at 1000x 

magnification with the same microscope described above, equipped with an epifluorescence 

unit and using UV, blue or multiple excitations (NIKON Filter Blocks DAPI UV-2E/C, NB-

2A and DAPI/FITC/TRITC). Picoplanktonic cells were distinguished as bacterioplankton 

(heterotrophic) and cyanobacteria (autotrophic) and nanoplanktonic cells as 

autotrophic/mixotrophic or heterotrophic nanoflagellates according to the type of fluorescence 

emitted. During the enumeration of the food items, photos of representative groups were 

taken to measure cells size dimensions using the software Image Pro Plus® (Version 4.5). 

   Micro-, nano-, and picoplanktonic carbon contents were derived from the measured cell 

dimensions, assigning an appropriate geometric formula, and calculating cell volumes 

(Chrzanowski and Simek 1990; Sun and Lui 2003). Cell volumes were converted to carbon 

biomass using a factor of 220 fg C μm-3 for flagellates (Børsheim and Bratbak 1987) and 82 

fg C cell-1 for cyanobacteria (mainly Synechoccocus) assuming it represents a coastal 

population (Worden et al. 2004). Bacterial cellular carbon (BOC) was estimated from: BOC 

(fg) = 90.06 x BVOL (μm3)0.59, where BVOL = bacterial volume (Simon and Azam 1989). 

The following volume to carbon relationships were applied for the remaining prey types 

(Menden-Deuer and Lessard 2000): diatoms, log10 pg C cell-1 = -0.541 + 0.811 x log10 volume 

(μm3); dinoflagellates, log10 pg C cell-1 = -0.353 + 0.864 x log10 volume (μm3); and ciliates, 

log10 pg C cell-1 = -0.639 + 0.984 x log10 volume (μm3).

Estimation of nauplii feeding rates and selective feeding

   Clearance (filtration) and ingestion rates were assessed from the changes in Chl-a (as total) 

and cell abundances (per prey type) between the beginning and the end of the incubations, 

using the equations provided by Frost (1972). The instantaneous growth coefficient of the 

prey (k) is obtained from the changes in prey concentration (C) in the control treatments at 

time t1 (C1) and t2 (C2) of the incubation: 
)(

12
12 ttkeCC

The instantaneous grazing coefficient (g) is calculated from: 
))((

1
*
2

12 ttgkeCC

where *
2C  is the prey concentration at t2 in the treatment containing the consumers. A mean 

food concentration C , expressed in terms of Chl-a concentration, cell numbers or biomass, 

is calculated from: 
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The clearance rate (F = volume cleared copepod-1 time-1) is obtained from the volume of the 

incubation bottle (V, in mL) and the copepod density in each bottle (N):

NgVF /

The ingestion rate (I = food concentration or biomass copepod-1 time-1) is calculated from: 

CFI

   Ingestion rates were further considered in the analysis only when the difference in prey 

concentration between the control and grazing treatments at the end of the incubation proved 

to be significantly higher in the control (Student’s t-test; Sokal and Rohlf 1981). Since the 

natural prey assemblages in the incubation bottles usually contain multiple trophic levels 

(Tang et al. 2001), a verification of the potential interactions was done by calculating the 

potential grazing rate of the “additional grazers” (e.g. nanoflagellates, dinoflagellates, 

ciliates). For this purpose, a generic model for planktonic protistan grazing (Peters 1994) was 

used:

ln GR = -2.701 – 0.344 ln(VPY) + 0.477 ln(VPD) + 0.489 ln(CPY) – 0.270 ln(CPD) + 0.033T 

where T = temperature (ºC), V = cell volumes (μm3), and C = abundances (cells mL-1) of both 

the prey (PY) and predators (PD).

   Selective feeding by the nauplii in the grazing experiments was assessed by using the 

Vanderploeg and Scavias’s electivity index (E*) (Vanderploeg and Scavia 1979a, b): 

)/1(
)/1(*

nW
nWE

i

i
i

with n as the total number of prey kinds in a given experiment and the selectivity coefficient 

Wi is defined by:

i

i
i F

FW

where Fi is the clearance rate of the ith food type and Fi is the sum of clearance rates on all 

food types. The electivity index E* ranges between -1 and +1; negative values correspond to 

avoidance; zero values represent neutrality, and positive values selectivity. The use of this 

index has been recommended especially in the cases where the different food types are not 

equally abundant (Lechowicz 1982). 
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RESULTS

Food conditions during the grazing experiments 

   Food composition and concentration (as total Chl-a, abundance, and/or biomass) at the 

beginning of the grazing experiments are summarized in Table 1; detailed prey composition is 

provided in Tables 2 and 3. The initial Chl-a concentrations in the experiments with natural 

assemblages in the <100 or <125 μm fractions (experiments 1 to 6) were distributed over a 

wide range (0.3 - 7 μg L-1), as were those in the experiments with cultured microalgae (1 - 12 

μg L-1). The initial prey abundances (excluding the picoplankton) in experiments 1 to 6 (Fig. 

2a) were generally dominated by nanoflagellates (31 - 82%) and/or by diatoms (7 - 60%). The 

nanoflagellates (range: 7 - 39 x 105 cells L-1) were mainly distributed in the 2-5 μm size range 

and the diatoms (range: 0.7 - 35 x 105 cells L-1) were frequently dominated by the chain 

forming Skeletonema spp. (Table 2). Ciliates (mostly in the microplankton size range), 

dinoflagellates (in the nano- and microplankton size range), and other diatoms in solitary or 

chain forms, were less abundant in these experiments (<2 x 105 cells L-1; Table 2) and 

contributed <8 % of the total abundance (Fig. 2a). In terms of initial carbon biomass (Fig. 2b; 

Table 2), chain forming diatoms (range: 6 - 386 μg C L-1) were most frequently the largest 

contributors to the total (11 - 70%); occasionally, the nanoflagellates (range: 14 - 47 μg C L-1)

and dinoflagellates (range: 11 - 30 μg C L-1) constituted an important component (up to 41%). 

  During the grazing experiments with only the picoplankton (<3 μm) and the pico- to 

nanoplankton (<20 μm) fractions as food for the nauplii (experiments 7 to 14; Table 3), the 

cyanobacteria (range: 2 - 31 x 105 cells L-1; 0.02 - 0.3 μg C L-1) and the nanoflagellates, 

mostly in the lowest size fraction (range: 2 - 6 x 105 cells L-1; 0.7 - 2.6 μg C L-1), were a 

minor component. Instead, the bacterioplankton represented >90% of the total initial 

abundance and biomass (range: 591 - 2962 x 106 cells L-1 and 14 - 72 μg C L-1, respectively). 

In the experiments with I. galbana as food, the initial abundances and biomasses (Table 1) 

were one to two orders of magnitude higher than those of nanoflagellates in the natural 

assemblages (Table 2 and 3).  

   The potential interference of grazing by multi-trophic levels during the different 

experiments was tested (interactions: diatoms-dinoflagellates-nauplii, nanoflagellates-

dinoflagellates-nauplii, cyanobacteria-nanoflagellates-nauplii and bacterioplankton-

nanoflagellates-nauplii) and was found to be minimal (<1% of the total grazing by the 

“additional grazer”). Therefore, no correction was applied to account for the effect of other 
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grazers (mainly nanoflagellates and dinoflagellates) in the estimates of Oithona spp. nauplii 

ingestion.

Nauplii feeding on nano-to micro-planktonic size fractions 

   Among the different prey types in the nano- and microplanktonic size fractions 

(experiments 1 to 6; Table 2), the Oithona spp. nauplii consumed some of them (Table 4). 

There was no evidence that the nauplii fed on ciliates, chain diatoms, or large dinoflagellates 

(>40 μm). The nauplii ingested chain-forming centric diatoms only when they were present as 

solitary cells (Skeletonema spp. and Thalassiosira spp.; 12 and 17 μm cell length, 

respectively), except for Chaetoceros spp. (14 μm length). Also, solitary cells of Navicula

spp. (24 μm length) were present in all the experiments (1-6) but were fed upon by the nauplii 

only in two of them; other pennate genera (e.g. Asterionellopsis, Cylindrotheca, Pseudo-

nitzschia; length range: 27-50 μm) were not consumed. Feeding on dinoflagellates was 

concentrated on the small-sized cells (<10 - 39 μm) and occurred in 5 of these experiments. 

Significant feeding on nanoflagellate cells was detected in all 6 experiments, more often on 

the smallest size fraction (2 - 5 μm).  

   In terms of the ingestion rates by the Oithona spp. nauplii (Table 5), those on solitary 

centric diatoms were much higher (range: 229 - 3633 cells nauplii-1 d-1; 49 - 506 ng C nauplii-1

d-1) than on solitary pennate diatoms (range: 74 - 143 cells nauplii-1 d-1 ; 4 - 7 ng C nauplii-1 d-

1). Ingestion rates on dinoflagellates were in the same order of magnitude as those estimated 

for the solitary diatoms (range: 20 - 1524 cells nauplii-1 d-1; 1 - 162 ng C nauplii-1 d-1). 

Ingestion rates on nanoflagellates (range: 5000 -51000 cells nauplii-1 d-1; 28 - 1076 ng C 

nauplii-1 d-1) represented between 27 and 90% of the total carbon consumed by the nauplii in 

the different experiments (Table 5). Also, the ingestion of Chl-a was detected to be 

significant, except for experiment 5 although carbon ingestion was significant in the latter 

(Tables 4 and 5).

Nauplii feeding on pico- to nanoplanktonic size fractions 

   The Oithona spp. nauplii displayed significant feeding on nanoplankton cells 

(nanoflagellates size = 2 - 5 μm) but less frequently on picoplankton cells (bacterioplankton 

and cyanobacteria cellvolumes = 0.15 and 1.5 μm3, respectively) when both, pico- and 

nanoplanktonic preys were available (experiments 7 to 10). Consumption of 

autotrophic/mixotrophic (AMNF) and heterotrophic nanoflagellates (HNF) was detected 

during these 4 experiments and it was, in most cases, the main carbon source for the nauplii 
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(Table 6). Ingestion rates on HNF were in general similar (range: 5 - 9 x 103 cells nauplii-1 d-1;

15 - 27 ng C nauplii-1 d-1) to those on AMNF (range: 2 - 8 x 103 cells nauplii-1 d-1; 10 - 42 ng 

C nauplii-1 d-1) but these rates were in the lower range of those estimated under a more diverse 

food size spectrum (experiments 1 to 6; Table 5). Ingestion of cyanobacteria and 

bacterioplankton was observed only once in these experiments but it was more common when 

they were the only food size available (experiments 11 to 14; Table 6). Ingestion rate ranged 

on cyanobacteria between 9 and 20 x 103 cells nauplii-1 d-1 (1 - 1.7 ng C nauplii-1 d-1) and on 

bacterioplankton between 4.8 and 18 x 106 cells nauplii-1 d-1 (116 - 444 ng C nauplii-1 d-1).

Nauplii feeding on cultured Isochrysis galbana

   In the three grazing experiments with I. galbana offered as a mono-food type to Oithona

spp. nauplii (experiments 15 to 17), the abundance and biomass were determined only twice 

(Table 1). The statistical analysis of the differences between the final abundances in the 

control and grazing bottles indicated that the nauplii fed on this microalgae; the same was true 

in terms of Chl-a concentration (Table 7). Ingestion rates on I. galbana (Table 7) were similar 

in terms of cells and Chl-a even though one experiment had almost twice the food 

concentration of the other (Table 1). Cell ingestion rates on this nanoflagellate were in the 

range (experiments 1 to 6) or one order of magnitude higher (experiments 7 to 10) compared 

with those estimated from incubations with natural nanoflagellates (Tables 5 and 6). 

Response of Oithona spp. nauplii to food concentration and food type 

   The functional relationships between cell ingestion rates by the Oithona spp. nauplii and 

food concentration (in terms of abundance), for each prey type, presented no saturation 

response albeit the wide range of food concentrations in the experiments. Instead, ingestion 

was linear over this wide range (Fig. 3a-d). However, the relationship between Chl-a

concentration and Chl-a ingestion (Fig. 3e) was not significant (p >0.05). In terms of food 

selection (Fig. 4), the values of the electivity index (Ei*) for the different food types are 

mostly in the -0.25 to +0.25 range and suggest non-selective feeding by the nauplii. Only on 

three occasions out of 21 the Ei* values were strongly negative (> -0.5), suggesting avoidance 

of diatoms (experiment 1), nanoflagellates (experiment 4) and of the picoplankton 

(experiment 8).  
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DISCUSSION

Food spectrum and ingestion rates by Oithona spp. nauplii 

   The ingestion rate data of Oithona spp. nauplii derived from this study probably represent 

the first one to include a variety of natural prey assemblages, in terms of food size (0.2 – 125 

μm), food type (bacterioplankton, cyanobacteria, nanoflagellates, dinoflagellates, ciliates and 

diatoms), and prey motility. Most previous studies on Oithona feeding refer to adults, and 

their diet appears to be wide, including diatoms, nanoflagellates, dinoflagellates, ciliates and 

copepod nauplii (e.g. Marshall and Orr 1966; Lampitt and Gamble 1982; Nakamura and 

Turner 1997; Vargas and Gonzalez 2004a; Castellani et al. 2005), as well as detritus 

(González and Smetacek 1994). The fewer studies on the feeding of Oithona nauplii indicate 

that flagellates, dinoflagellates and ciliates are suitable prey (Eaton 1971 fide Nielsen and 

Sabatini 1996; Drits and Semenova 1984 fide Nielsen and Sabatini 1996; Uchima and Hirano 

1986; Lonsdale et al. 2000); detritus has not been found to be important (Uchima and Hirano 

1986).

   Our results on the feeding of Oithona spp. nauplii in the upwelling area off Concepción 

suggest that their diet is largely based on the picoplankton and nanoplankton size ranges (0.2-

20 μm), including nanoflagellates (mean ingestion rate= 350 ng C nauplii-1 d.-1) , small 

dinoflagellates (98 ng C nauplii-1 d.-1), single diatom cells (106 ng C nauplii-1 d.-1), as well as 

bacterioplankton (121 ng C nauplii-1 d.-1) and cyanobacteria (0.4 ng C nauplii-1 d.-1). Chain 

diatoms, a dominant component of the plankton biomass during the upwelling period in this 

system (Vargas et al. 2007; Gonzalez et al. in press), were not at all consumed by the nauplii. 

This item might be either too big or too heavily armoured for the nauplii to be handled 

efficiently. In the upwelling region off northern Chile, small copepods (Acartia tonsa, 

Oithona similis and Paracalanus parvus) also have been shown to feed on solitary cells but 

not on chain diatoms (Vargas and Gonzalez 2004a). Ciliates were not included in the diet of 

the Oithona nauplii in this study, although other prey of similar size (20 - 39 μm) and 

abundance (~0.9 x103 cells L-1) were ingested. 

   The ingestion of natural bacterioplankton and cyanobacteria by Oithona nauplii in the 

present study, mostly when no larger prey (nanoflagellates) was available, apparently is the 

first evidence of the inclusion of this type of item in the diet of planktonic copepods. This 

observation is strengthened by previous studies using fluorescent labeled bacteria (FLB). Roff 

et al. (1995) reported the presence of FLB in the gut of many copepod nauplii, among them 

NII-NIII stages of Oithona spp. (but did not provide rate estimates), and discarded incidental 
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feeding since some nauplii of larger copepods (e.g. Centropages velificatus and Euchaeta

marina) constantly failed to ingest the FLB. Turner and Tester (1992) reported mean 

ingestion rates of 5.7 x 106 FLB nauplii-1 d-1 for NI-NIII stages of Acartia tonsa (mean body 

length = 75 - 132 μm). This estimate is about half of the mean value estimated in this study 

(10 x 106 picoplankton cells nauplii-1 d-1) for NIII-NV stages of Oithona spp. (mean body 

length = 120 - 165 μm). However, the average cell volume of the FLB was 0.7 μm3 in the first 

case, compared to the smaller volume (0.15 μm3) of the natural bacterioplankton in the 

present study.

The present study suggests that most prey items of Oithona spp. nauplii are motile. 

Preference for motile prey types has been documented before for Oithona spp. (Nielsen and 

Sabatini 1996; Svensen and Kiørboe 2000; Paffenhöfer and Mazzocchi 2002). Moreover, 

Uchima and Hirano (1986) concluded that the developmental stages of O. davisae only grew 

and survived on motile food particles. Oithona is not known to generate a feeding current; 

they have a limited swimming performance and act as an ambush predator using 

hydromechanical detection of prey (Svensen and Kiørboe 2000; Saiz et al. 2003).  Turbulence 

influences this detection and, consequently, their feeding rates; at lowest turbulence 

intensities (10-4 cm2 s-3), feeding is enhanced (Saiz et al. 2003; Maar et al. 2006). In part then, 

the experimental set up in this study, with low turbulence levels, may explain the relatively 

high ingestion rates.

   In terms of food selection, the general lack of strong selectivity in the Oithona nauplii (Fig. 

4) suggests that they probably act as opportunistic feeders, a strategy that might favor their 

persistence in this upwelling system. Only occasionally the electivity index (Ei*) indicated 

avoidance of certain food types. In experiment 1, this was the case for diatoms; most 

probably, single cells of Skeletonema sp. were solely ingested because they occurred at high 

abundance compared to other experiments (Table 2). In experiment 4, avoidance occurred for 

nanoflagellates; here, the abundance of them was lowest, as was the ingestion rate, compared 

to the rest of the experiments (Table 2). In this case, total ingestion was complemented with 

the diatoms Thalassiosira and Navicula spp., as single cells (Table 5).   

   Commonly, cyclopoids have been assumed to have lower ingestion rates compared to 

similarly sized calanoids, based on arguments of lower metabolic requirements in cyclopoids 

(Paffenhöfer 1993; Saiz and Calbet 2007). A few other studies indicate that this group is 

comparable with the calanoids in terms of ingestion, growth and development (Kiørboe and 

Sabatini 1994; Sabatini and Kiørboe 1994; Calbet et al. 2000). In the present study, total 

carbon ingestion rates (31 - 2184 ng C nauplii-1 d.-1) by the Oithona nauplii are: i) in the range 
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or higher than those reported for some calanoid nauplii and adult cyclopoids, and ii) in the 

lower range of those of copepodite and adult stages of some small-sized calanoids (Table 8). 

On the other hand, the comparatively lower carbon ingestion rates of adult females of O. nana

(Lampitt and Gamble 1982) and adults + CV copepodites of O. similis (Nakamura and Turner 

1997; Castellani et al. 2005), can be explained by food limitation during the incubations 

(density of 15 to 50 copepods in 100 or 200 mL bottles incubated for 24 h). In fact, ingestion 

rates have been shown to be higher for O. similis adults in incubations at a density of 10 

copepods in 1 L-1 for ~24 h (Vargas and Gonzalez 2004a).

   Daily carbon rations were assessed by using an estimate of the carbon content of Oithona

nauplii (0.26 μg C nauplii-1; Swadling et al. 1997) combined with the carbon ingestion rates 

obtained in the experiments (Tables 5 and 6). The values range from 40 to 840% of the body 

carbon (291 ± 295%) when the nauplii fed on nanoflagellates, dinoflagellates and diatoms 

(experiments 1 to 6), and from 12 to 172% (63 ± 57%) under a nanoflagellate and/or 

picoplankton diet (experiments 7 to 14). There is a trend of increase in the mean daily ration 

with food concentration (73% at <50 μg C L-1, n = 6; 156% at 50-100 μg C L-1, n = 4; 449% 

at 100-500 μg C L-1, n = 3). This trend was recently described by Saiz and Calbet (2007) in a 

review of the patterns of ingestion rates in small calanoid copepods, together with high daily 

rations (up to 300%). Similarly, high values (up to 308%) have been documented before for 

calanoid copepod nauplii of Acartia grani (Ingerslev Henriksen 2005). In the case of 

Oithonids, data are available for O. similis females (Sabatini and Kiørboe, 1994; Castellani et 

al., 2005) and naupliar stages of O. davisae (Ingerslev Henriksen 2005), all documenting 

lower daily rations compared to calanoids. Sabatini and Kiørboe (1994) and presented values 

between 10 and 22%, Castellani et al. (2005) of ~3 to 32%, and Ingerlev Henriksen of 121%. 

To sustain some modest growth and basic metabolic needs, Paffenhöfer (1998) suggested that 

at least 30% of the body carbon needed to be ingested by Oithona spp. nauplii (during a North 

Atlantic spring bloom); this requirement was accomplished during nearly all the experiments 

in this study (Tables 5 and 6) and suggests that growth is not food limited.  

Grazing impact by Oithona spp. nauplii in the upwelling area off Concepción

   In the highly productive, coastal upwelling area off Concepción, the microbial food web is a 

fundamental and almost permanent feature of the trophic pathways in the water column, and 

micro-heterotrophs have been shown to be an important component in channeling primary 

and/or bacterial production (Cuevas et al. 2004; Böttjer and Morales 2005; Vargas et al. 

2007). Among the micro-heterotrophs, metazoans <200 μm have not been explicitly included 
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as grazers in these studies, nor have they been in many other studies of planktonic food webs 

in coastal environments (Turner 1991). Ingestion rates of Oithona nauplii obtained in this 

study are compared with that of other micro-heterotrophs which potentially compete with 

them for the same prey types in the coastal system (Table 9). In terms of carbon, the ingestion 

of picoplankton by the nauplii can be two to five orders of magnitude higher than that shown 

by nanoflagellates; ingestion of picoplankton by ciliates can be similar to that of the nauplii 

but the maximum ingestion of the latter can be three orders of magnitude higher. Also, carbon 

ingestion of diatoms + nanoflagellates by the nauplii can be one to four orders of magnitude 

higher than those displayed by ciliates and heterotrophic dinoflagellates. In terms of cell 

ingestion, the estimates are also orders of magnitude higher for the nauplii. This is not 

surprising considering the size difference between the Oithona nauplii and that of most 

protistan grazers.  

   Given the lower abundances of copepod nauplii compared to that of heterotrophic protists in 

most of the coastal marine systems, their carbon consumption rates might be similar, or lower, 

than those of the protistan grazers (e.g. Verity et al. 1993). To compare this for the present 

data, consumption rates by the Oithona nauplii were calculated using the daily carbon 

ingestion rates on different prey types (Tables 5 and 6) and a maximum naupliar (Oithona

nana) abundance in the area of study (15 nauplii L-1; Torres, 2006). The results are 

represented in Figure 5, a scheme of the trophic interactions of the microbial food web in the 

Concepción upwelling area; the consumption rates of the Oithona nauplii appear to be mostly 

similar to those of the protistan micro-grazers. This data also suggest that the Oithona spp. 

nauplii can exert from a small to a large grazing impact on the standing stock of 

nanoflagellate assemblages (range: 2 - 68%; mean = 34%) whereas the impact is lower on 

picoplankton (<21%) and dinoflagellates (<24%), and minimal on diatoms (<13%). These 

grazing impact estimates are substantially higher than those previously reported for different 

stages in Oithonids (mostly <5% of prey standing stocks; Lonsdale et al. 2000; Zeldis et al. 

2002; Antienza et al. 2006).

   In order to estimate the grazing impact of the Oithona nauplii upon primary production (PP) 

in the upwelling area off Concepción, the following estimates were considered: a) 

consumption rates were derived using the maximum nauplii abundance of 15 ind-1 L-1 and 

integrating this value over the top 35 m (= 525000 ind-1 m-2), and b) total PP values of 5061 

(spring 2004) and 5393 mg C m-2 d-1 (summer 2005) reported by Vargas et al. (2007) for the 

same area of study. The grazing impact of the nauplii on the relatively high PP values during 

the upwelling period was fairly low (4 - 5%). In comparison with the impact of the metazoans 
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in the mesozooplankton size range, in the same area and seasonal period as in this study, these 

estimates are higher than those reported by Vargas et al. (2007; <2%) but lower than those in 

Grünewald et al. (2002; 17%). In general, the grazing impact of mostly small-sized copepods 

on PP in several ecosystems varies over a wide range (4 - 82%; mean = 35%, n= 8 for nets 

<100 μm; Gallienne and Robins 2001). Estimates of the grazing impact by metazoan in the 

microzooplankton size range (mainly small-sized calanoid and cyclopoid copepod nauplii) are 

less frequent in the literature; White and Roman (1992) reported it to be between 8 and 28% 

in Chesapeake Bay; Paffenhöfer (1998) provides estimates for early copepodites of small 

copepods of between 15 and 21%. 

   In terms of the total grazing impact of heterotrophic protists (including nano- to 

microzooplankton assemblages) on total PP in the same area of study, Vargas et al. (2007) 

reported values between 13% (spring) and 18% (summer) during the upwelling period but 

they only considered protistan grazers. To obtain the total grazing impact of whole micro-

grazer assemblages on total PP, values obtained for the Oithona nauplii in the present study 

were added to those in Vargas et al. (2007). The estimates increase the impact to 18 - 22%, 

values that are relatively high considering the high levels of PP in the system; they are lower 

than those reported for whole nano- to microzooplankton assemblages during the winter, non-

upwelling period (132 - 180 %; Böttjer and Morales 2005), when PP is lower (Montecino et 

al. 2004; Vargas et al. 2007) and the Oithona nauplii are scarce in abundance (Torres 2006).  

   This study indicates that the Oithona nauplii in the upwelling area off Concepción predate 

mostly on the nanoflagellate size fraction and, therefore, the grazing impact upon PP should 

be higher when considering only this size fraction. Since there are no size-fractionated PP 

values available for the system under study, an estimate was obtained based on the data 

reported by Iriarte and González (2004) for the upwelling system of northern Chile; a 

contribution of ~20% by the nano-photoautotrophs to total PP in the study region was 

assumed to be representative of the system. With this, the grazing impact by the Oithona

nauplii alone increases to 21 - 24% of the PP within their food size range. Also, their grazing 

impact on PP <20 μm and/or on the standing stocks of micro-organisms might increase 

considering that the maximum abundance of the Oithona nauplii in this study (15 nauplii L-1)

is relatively low compared to the values reported for other systems (up to 100 nauplii L-1), for 

example in Turner (2004), Hansen et al. (2004), and Ward and Hirst 2007). Overall, the 

Oithona spp. nauplii in this upwelling system are important in controlling the abundance, and 

probably the production of nano-assemblages. At the same time, the data suggest that the 

nauplii play a minor role in controlling the abundance of the dominant component of the 
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system, the chain diatoms. On the other hand, the diversity of food types ingested by Oithona

spp. nauplii undoubtedly contributes to their presence throughout the year in this upwelling 

system and their significant grazing impact on nanoplankton assemblages certainly allows 

them to link the microbial and classical food web in this system.
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Table 1. Experimental set up during the Oithona spp. nauplii feeding experiments. Initial prey 

concentration in terms of chlorophyll-a (μg Chl-a L-1), abundance (x 106 cells L-1), and 

biomass (μg C L-1) are included. T = in situ temperature; --- = not determined; presence of 

Oithona nana (a) and/or O. similis (b).

Exp. Date T Food offered Nauplii density Initial food concentration 

 (D/M/Y) (°C) (μm) (N°/bottle) Chl-a Abundance Biomass 

1 22/11/2004 11.5 natural < 125 20  a 6.7 3.4* 143* 

2 20/01/2005 11.5 natural < 125 12  a 3.1 2.3* 69* 

3 02/02/2005 11.5 natural < 100 9  a 3.2 1.7* 70* 

4 30/03/2005 12.0 natural < 100 9  a 0.3 0.8* 40* 

5 26/09/2005 12.0 natural < 100 7  a 5.9 5.3* 587* 

6 27/10/2005 11.5 natural < 100  13  a,b 6.4 6.5* 306* 

7 04/10/2006 11.3 natural < 20 11  a --- 1346 34 

8 05/10/2006 11.3 natural < 20 12  a --- 1330 34 

9 28/02/2007 12.2 natural < 20  13  a,b 0.8 2089 54 

10 01/03/2007 12.0 natural < 20  10  a,b 0.9 2964 75 

11 04/10/2006 11.3 natural < 3 11  a --- 591 14 

12 05/10/2006 11.3 natural < 3 12  a --- 736 18 

13 28/02/2007 12.2 natural < 3  11 a, b 0.02 1138 28 

14 01/03/2007 12.0 natural < 3  11 a,b 0.02 1289 31 

15 23/11/2004 11.5 Isochrysis galbana 15 a 6.4 6.0 79 

16 18/01/2005 11.5 I.galbana 13 a 1.1 --- --- 

17 19/01/2005 11.5 I.galbana 10 a 11.7 10.5 167 

* = Picoplankton size-fraction not included 



Scientific contribution 

Table 2. Composition and mean ± SD (n = 3) abundance (cells mL-1) and biomass (μg C L-1, in parenthesis) of the different food types at the 

beginning of the grazing experiments with Oithona spp. nauplii incubated with natural nano- to microplankton assemblages from the upwelling 

area off Concepción (experiments 1 to 6).  Diatom are identified to genera, ciliates were mostly represented by oligotrichous and dinoflagellates 

by gymnodinoids. 

1 2 3 4 5 6 
Nanoflagellates       
2-5 μm   908 ± 117 (5.1 ± 0.7) 1525 ± 204 (8.6 ± 1.2) 809 ± 57  (4.6 ± 0.3) 423 ± 31 (2.4 ± 0.2) 1010 ± 100 (5.7 ± 0.6) 3519 ± 303 (20 ± 1.7) 
5-10 μm   213 ± 14    (11 ± 0.7)   281 ± 50 (14 ± 2.6) 183 ± 14  (9.4 ± 0.7) 154 ± 43 (7.8 ± 2.2) 461 ± 55   (24 ± 2.8) 413 ± 112 (21 ± 5.7) 
10-15 μm     29 ± 8.2  (2.8 ± 0.8)    2.1 ± 0.4 (0.2 ± 0.04) 3.5 ± 0.8 (0.3 ± 0.1) 111 ± 20  (11 ± 2.0) 146 ± 19   (14 ± 1.9) 58 ± 7.1 (5.7 ± 0.7) 
Dinoflagellates       
< 10 μm    0.9 ± 0.2 ( 0.03 ± 0.01)    0 1.2 ± 0.2 (0.04 ± 0.01) 0 5.5 ± 0.7 (0.2 ± 0.02) 56 ± 16 (2.0 ± 0.6) 
11-19 μm    2.7 ± 1.0  ( 0.2 ± 0.1)    3.5 ± 0.6 (0.3 ± 0.04) 7.1 ± 0.4 (0.6 ± 0.1) 53 ± 2.9 (3.8 ± 0.2) 27 ± 1.3 (2.5 ± 0.2) 95 ± 5.2 (9.9 ± 0.4) 
20-39 μm    8.7 ± 0.7 (3.6 ± 0.3)    7.7 ± 1.6 (3.7 ± 0.8) 11 ± 1.3 (5.9 ± 0.5) 13 ± 0.4 (7.2 ± 0.5) 14 ± 1.0 (6.4 ± 0.5) 8.7 ± 2.0 (5.9 ± 1.2) 
40-59 μm    4.2 ± 0.3 ( 6.8 ± 0.2)    3.4 ± 0.6 (13 ± 2.3) 1.3 ± 0.5 (2.9 ± 1.7) 2.6 ± 1.1 (5.6 ± 3.1) 5.4 ± 1.6 (15 ± 2.0) 4.4 ± 3.7 (7.2 ± 5.2) 
60-99 μm    0    0.5 ± 0.5 (1.6 ± 1.1) 0.3 ± 0.1 (2.4 ± 0.8) 0 0.6 ± 1.0 (5.7 ± 9.9) 0 
Ciliates     0.9 ± 0.3 (1.5 ± 0.4)    0.7 ± 0.2 (1.6 ± 0.7) 0.8 ± 0.1 (2.0 ± 0.4) 1.3 ± 0.1 (5.5 ± 0.6) 0.1 ± 0.03 (0.4 ± 0.2) 1.3 ± 0.1 (3.2 ± 0.5) 
Pennate diatoms       
Asterionellopsis (s)    0    0 22 ± 4.4 (1.4 ± 0.3) 5.3 ± 3.7 (0.3 ± 0.2) 0 0 
Asterionellopsis (ch)    9.4 ± 2.3 (0.6 ± 0.1)    0 0 0 31 ± 12 (2.1 ± 0.7) 36 ± 12 (2.2 ± 0.7) 
Cylindrotheca (s)    6.3 ± 1.4 (0.5 ± 0.1)    1.2 ± 0.4 (0.1 ± 0.03) 1.1 ± 0.5 (0.1 ± 0.04) 2.9 ± 1.7 (0.2 ± 0.1) 53 ± 11 (4.0 ± 0.8) 213 ± 7.2 (16 ± 0.5) 
Navicula (s)    9.4 ± 2.4 (0.5 ± 0.1)    2.2 ± 0.9 (0.1 ± 0.04) 0.5 ± 0.4 (0.03 ± 0.03) 3.5 ± 0.9 (0.2 ± 0.04) 27 ± 7.2 (1.3 ± 0.4) 31 ± 5.4 (1.5 ± 0.3) 
Pseudonitzschia (s)    0     17 ± 2.8 (1.0 ± 0.2) 0 0.7 ± 1.2 (0.04 ± 0.1) 0 0 
Pseudonitzschia (ch)    0     24 ± 4.8 (1.4  0.3) 0.9 ± 0.8 (0.05 ± 0.05) 2.6 ± 0.2 (0.1 ± 0.1) 0 17 ± 7.2 (1.0 ± 0.4) 
Centric diatoms       
Chaetoceros (s)    0    0 0.4 ± 0.6 (0.1 ± 0.1) 4.8 ± 0.5 (0.6 ± 0.1) 113 ± 19 (14 ± 2.4) 20 ± 19 (2.6 ± 2.4) 
Chaetoceros (ch)     0    0 69 ± 4.6 (8.7 ± 0.6) 25 ± 4.8 (3.2 ± 0.6) 1365 ± 177 (173 ±22) 133 ± 80 (17 ± 10) 
Coscinodiscus (s)    7.0 ± 2.4 (3.3 ± 1.1)    0.8 ± 0.7 (0.4 ± 0.4) 2.1 ± 0.3 (1.0 ± 0.1) 2.2 ± 0.7 (1.0 ± 0.3) 139 ± 9.8 (65 ± 4.6) 17 ± 2.7 (8.0 ± 1.3) 
Eucampia (ch)    0    0 0 1.0 ± 1.7 (0.6 ± 0.1) 0 0 
Leptocylindrus (ch)    0    0 0 0 0 25 ± 22 (3.7 ± 3.3) 
Skeletonema (s)    154 ± 48 (7.7 ± 2.4)    6.2 ± 2.2 (0.3 ± 0.1) 0 0 0 0 
Skeletonema (ch)   2015 ± 312 (100 ± 16)   465 ± 82 (23 ± 4.1) 610 ± 98 (30 ± 4.8) 27 ± 3.7 (1.4 ± 0.2) 114 ± 19 (5.7 ± 0.9) 839 ± 80 (42 ± 4.0)
Thalassiosira (s)    0   0 0 3.5 ± 1.2 (0.5 ± 0.2) 294 ± 31 (41 ± 4.3) 246 ± 109 (34 ± 15) 
Thalassiosira (ch)    0   0.9 ± 1.6 (0.1 ± 0.2) 0.8 ± 0.8 (0.1 ± 0.1) 1.7 ± 1.8 (0.2 ± 0.2) 1490 ± 77 (207 ± 11) 742 ± 341 (103 ± 47) 
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Table 3. Composition and mean ± SD (n = 3) abundance (cells mL-1) and biomass (μg C L-1,

in parenthesis) of the different food types at the beginning of the grazing experiments with 

Oithona spp. nauplii incubated with natural picoplankton and/or nanoplankton assemblages 

from the upwelling area off Concepción (experiments 7 to 14). BPL= bacterioplankton 

(abundance values x 103; mean volume = 0.15 μm3); CYB= cyanobacteria (1.5 μm3);

AMNF= autotrophic/mixotrophic nanoflagellates (24.5 μm3); HNF= heterotrophic 

nanoflagellates (15.1 μm3); --- = not included.  

Exp. BPL CYB AMNF HNF 

7 1346 ± 25 (33 ± 0.6)   377 ± 27 (0.03 ± 0.00)  61 ± 20 (0.3 ± 0.1) 110 ± 8 (0.4 ± 0.0) 

8 1330 ± 98 (32 ± 2.4)   456 ± 33 (0.04 ± 0.00) 105 ± 23 (0.6 ± 0.1) 162 ± 42 (0.5 ± 0.1) 

9 2086 ± 86 (51 ± 2.1) 3142 ± 486 (0.3 ± 0.04) 225 ± 18 (1.2 ± 0.1) 398 ± 56 (1.3 ± 0.2) 

10 2962 ± 199 (72 ± 4.8) 1562 ± 322 (0.1 ± 0.03) 246 ± 33 (1.3 ± 0.2) 391 ± 27 (1.3 ± 0.1) 

11 591 ± 30 (14 ± 2.0)   263 ± 23 (0.02 ± 0.00) --- --- 

12   736 ± 107 (18 ± 2.6)   193 ± 33 (0.02 ± 0.00)  --- --- 

13 1138 ± 38 (28 ± 0.9)    658 ± 219 (0.05 ± 0.02) --- --- 

14 1289 ± 20 (31 ± 0.5)    731 ± 127 (0.06 ± 0.01) --- --- 
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Table 4. Statistical analysis (Student´s t-test) of the differences between the final abundance 

or Chl-a concentration in the control and the grazing bottles in the experiments with natural 

nano- to microplankton assemblages (experiments 1 to 6). Significance levels: *** = p 

<0.001, ** = p <0.01, * = p <0.05, ns = not significant, --- = not present. 

1 2 3 4 5 6 

Nanoflagellates       
2-5 μm *** ** * * * ** 
5-10 μm * ns ** ns ns *** 
10-15 μm ns ns ns ns ** * 
Dinoflagellates       
Gymnodinoids < 10 μm * --- * --- ns ** 
Gymnodinoids 10-19 μm ** ns * ns * ** 
Gymnodinoids 20-39 μm ns * * ns * * 
Gymnodinoids 40-59 μm ns ns ns ns ns ns 
Gymnodinoids 60-99 μm ns ns ns --- ns --- 
Oligotrichous ciliates ns ns ns ns ns ns 
Pennate diatoms       
Asterionellopsis spp. (s) --- --- ns ns --- --- 
Asterionellopsis spp. (ch) ns --- --- --- ns ns 
Cylindrotheca spp. (s) ns ns ns ns ns ns 
Navicula spp. (s) ns * ns * ns ns 
Pseudonitzschia spp. (s) --- ns --- --- --- --- 
Pseudonitzschia spp. (ch) --- ns --- ns --- ns 
Centric diatoms       
Chaetoceros spp. (s) --- --- --- ns ns ns 
Chaetoceros spp. (ch) --- --- ns ns ns ns 
Coscinodiscus spp. (s) ns ns ns --- ns ns 
Leptocylindrus spp. (ch) --- --- --- --- --- ns 
Skeletonema spp. (s) * ns --- ns --- --- 
Skeletonema spp. (ch) ns ns ns ns ns ns 
Thalassiosira spp. (s) --- --- --- *** ns ** 
Thalassiosira spp. (ch) --- --- --- ns ns ns 
Chl-a *** *** *** *** ns ** 
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Table 5. Mean rates of ingestion (± SD; n=3) of cells (first row; nanoflagellates in x 103 cells nauplii-1 d-1, dinoflagellates and diatoms in cells 

nauplii-1 d-1) and carbon (second row; in ng C nauplii-1 d-1) by Oithona spp. nauplii incubated with nano- to microplankton assemblages 

(experiments 1 to 6). Total ingestion in terms of Chl-a (ng Chl-a nauplii-1 d-1), cells (x103 cells nauplii-1d-1), and carbon (ng C nauplii-1 d-1).

Nanoflagellates Dinoflagellates Diatoms (solitary forms) Total 

Exp. 2-5 μm   5-10 μm 10-15 μm <10 μm 10-19 μm   20-39 μm Skeletonema Thalassiosira Navicula Chl-a Cells Carbon 

1 14 ± 1 

78 ± 6 

4 ± 1 

207 ± 50 

--- 

--- 

20 ± 4 

1 ± 0.1 

36 ± 2 

4 ± 0.3 

28 ± 4 

33 ± 5 

984 ± 282 

49 ± 14 

--- 

--- 

--- 

--- 
54 19 372 

2 30 ± 4 

167 ± 23 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

167 ± 86 

54 ± 28 

--- 

--- 

--- 

--- 

74 ± 27 

4 ± 1 
18 30 224 

3 16 ± 6 

93 ± 31 

8 ± 2 

425 ± 93 

--- 

--- 

58 ± 25 

2 ± 0.9 

251 ± 26 

24 ± 3 

137 ± 61 

162 ± 73 

--- 

--- 

--- 

--- 

--- 

--- 
21 24 705 

4 5 ± 0.4 

28 ± 2 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

--- 

229 ± 19 

68 ± 5 

143 ± 16 

7 ± 1 
4 5 104 

5 33 ± 6 

184 ± 35 

--- 

--- 

7 ± 1 

666 ± 105 

--- 

--- 

509 ± 139 

50 ± 14 

156 ± 40 

50 ± 13 

--- 

--- 

--- 

--- 

--- 

--- 
--- 41 950 

6 51 ± 3 

290 ± 19 

21 ± 0.2 

1076 ± 96 

1 ± 0.6 

106 ± 59 

844 ± 116 

29 ± 4 

1524 ± 181 

153 ± 23 

77 ± 44 

25 ± 14 

--- 

--- 

3633 ± 282 

506 ± 39 

--- 

--- 
19 79 2184 
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Table 6. Statistical analysis (Student´s t-test) of the differences between the final abundance in the control and grazing bottles and estimated 

mean ingestion rates (± SD; n = 3) of Oithona spp. nauplii in terms of cells (x 103 cells nauplii-1 d-1) and carbon (ng C nauplii-1 d-1) during 

incubations with natural pico- to nanoplankton assemblages (experiments 7 to 14).  Significance levels: *** = p <0.001, ** = p <0.01, * = p 

<0.05, ns = non significant. BPL = bacterioplankton; CYB = cyanobacteria; AMNF = mixotrophic/autotrophic nanoflagellates; HNF =

heterotrophic nanoflagellates; nd = no data. 

Experiment 7 8 9 10 11 12 13 14 

BPL
Difference in abundance 
Cell ingestion 
C ingestion 

ns
---
---

*
9734 ± 3362 

237 ± 82  

ns
---
---

ns
---
---

*
7079 ± 3078 

173 ± 75 

*
4768 ± 1989 

116 ± 48 

*1

---
---

***
18238 ± 723 

444 ± 18 

CYB

Difference in abundance 
Cell ingestion 
C ingestion 

***
6.2 ± 0.5 

0.51± 0.04  

ns
---
---

ns
---
---

ns
---
---

*
8.8 ± 2.9 
0.7 ± 0.2 

ns
---
---

ns
---
---

*
20.5 ± 4.9 
1.7 ± 0.4 

AMNF

Difference in abundance 
Cell ingestion 
C ingestion 

**
2.1 ± 0.5 
10.7 ± 2.6 

**
3.4 ± 0.6 

16.8 ± 3.2 

**
8.3 ± 1.3 

41.6 ± 6.4 

*
5.4 ± 0.7 
27.1 ± 3.4 

nd nd nd nd

HNF

Difference in abundance 
Cell ingestion 
C ingestion 

***
6.7 ± 0.4 
20.2 ± 1.1 

**
5.1 ± 0.9 

15.3 ± 2.6 

*
9.1 ± 2.2 

27.2 ± 6.5 

*
5.3 ± 3.7 

15.8 ± 11.0 
nd nd nd nd

Total C ingestion  31 269 69 43 173 116 --- 446
1 = Difference in prey concentration between the control and grazing treatments at the end of the incubation significantly higher in the grazing treatment (negative grazing).
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Table 7. Statistical analysis (Student´s t-test) of the difference between the final abundances 

and Chl-a concentrations of Isochrysis galbana in the control and grazing bottles and the 

estimated ingestion rates (± SD; n = 3) of Oithona spp. nauplii (experiments 15 to 17).  

Significance level: ***= p < 0.001, ** = p < 0.01, * = p < 0.05, nd= no data.

Experiment  15 16 17 

I.galbana Difference in abundance 

Cell ingestion (x103 cells nauplii-1d-1)

Carbon ingestion (ng C nauplii-1d-1)

**

28 ± 3.5 

365 ± 46 

nd

nd

nd

*

31 ± 9.3 

495 ± 149 

I.galbana Difference in Chl-a

Chl-a ingestion (ng Chl-a nauplii-1d-1)

***

18 ± 3.7 

***

6 ± 0.9 

***

20 ± 5.0 
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Table 8. Daily carbon ingestion rates (IR = μg C individual-1 d-1) of small cyclopoid and calanoid metazoans in coastal areas. PIP = picoplankton, 

NF = nanoflagellates, COC = coccolithophorids; DF = dinoflagellates, CI = ciliates, DT = diatoms, CN = copepod nauplii, IG = Isochrysis

galbana, and PHY = phytoplankton <200 μm. T = temperature (°C), FC = food concentration (* = x 106 cells L-1; ** = μg C L-1); --- = no data. 

Copepods Food spectra FC * FC** IR T Reference
cyclopoids       
Oithona nana a NF, DT, DF, CN --- 1-350 0.1 – 0.3 10 Lampitt & Gamble, 1982
O. similis a,b DF,CI,CN 0.001-3.2 --- 0.15 19-21.2 Nakamura & Turner, 1997
O. similis a PIP, NF, DF, CI, DT --- ~400-600 1.7 – 3.2 12-16.5 Vargas & Gonzalez, 2004a
O. similis a NF, COC, DF, CI, DT  --- 3-169 0.001 – 0.1 --- Castellani et al., 2005
Oithona spp. d PIP, NF,DF, CI, DT, IG 0.8-2964 14-587 0.03 – 2.2 11.3-12.2 This study
calanoids      
Calanus helgolandicus d DF, DT --- 32-108 0.2 – 0.8 15 Paffenhöfer, 1971
C. helgolandicus d NF,DF,DT, COC --- 364-768 0.3-1.9 15 Rey et al., 2001
Calanus spp. d NF, DF, CI, DT 0.07-0.16 12-30 0.02 - 0.07 5 Turner et al., 2001
Acartia tonsa a PIP, NF, DF, CI, DT -- 40-1800 4.3 - 5.8 ~11-13 Vargas et al., 2007
A. tonsa b NF, DF, CI, DT --- ~50-700 0-9.6 20.2-31.2 Kleppel & Hazzard, 2000
Paracalanus parvus a PIP, NF, DF, CI, DT --- 40-1800 4.4 - 6.0 ~11-13 Vargas et al., 2007
Paracalanus sp. a DF, CI 0.04-0.13 7-25 0.5 - 1.4 23.7-25.2 Suzuki et al., 1997
A. tonsa + P. parvus c PIP, NF, DF, CI, DT --- 40-1800 2.7 - 4.6 ~11-13 Vargas et al., 2007
calanoids + cyclopoids      
< 200 μm d PHY --- 80-160 0.1-0.3 --- Verity et al., 1993
a = adults, b =adult females, c = copepodites, d = nauplii 
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Table 9. Daily ingestion rates (IR) by different types of micro-grazers that potentially compete for the same prey types as the Oithona spp. 

nauplii in the area of study. Rates have been directly (grazing experiments) or indirectly obtained (generic model of Peters (1994) for protistan 

grazing). PIP = picoplankton; FLB = fluorescent labelled bacteria; BAC = heterotrophic bacteria; SYN = Synechococcus; PRO = 

Prochlorococcus; CRYP = cryptophytes; NF = nanoflagellates; COC = coccolithophorids; DF = dinoflagellates; CI = ciliates; DT = diatoms; --- 

= no data); IRa= (x 103 cells ind-1 d-1); IRb= (ng C ind-1 d-1).

Micro-grazer type Food spectra IRa IRb Method Reference 
Copepod nauplii      
Oithona spp. NF, DT 5-77 104-1980 Direct This study 
Oithona spp. PIP 6-18238 0.5-444 Direct This study 
Ciliates      
   Tintinnids NF, DF, DT 0.1-2.2 --- Direct Capriulo & Carpenter, 1980 

Strombidium sulcatum SYN, PRO 22 --- Direct Christaki et al., 1999 
   Mixed ciliates NF 0.02-0.5 --- Indirect Vargas & González, 2004b 
   Mixed ciliates PIP 0.17-1.8 --- Direct Ichinotsuka et al., 2006 
   Oligotrichous PIP 15-31 0.4-0.7 Indirect This study 
   Oligotrichous NF, DT 0.07 -0.25 1-10 Indirect This study 
Dinoflagellates      

Oxyrrhis marina NF, COC 0-0.1 --- Direct Hansen et al., 1996 
Gyrodinium galatheanum CRYP 0-0.0002 --- Direct Li et al., 2001 

   Mixed dinoflagellates DT 0.01-0.012 --- Indirect Vargas & González, 2004b 
Gonyaulax polygramma NF 0.001* 0.2* Direct Jeong et al., 2005 

   Mostly Gymnodinoids NF, DT 0.01-0.06 0.1-1.1 Indirect This study 
Heterotrophic nanoflagellates      
   Mixed FLB 0.1-0.7 --- Direct Sherr et al., 1988 
   Mixed SYN,PRO 0.13 --- Direct Christaki et al., 2005 
   Mixed  BAC 0.4-1.8 --- Indirect Vargas & Gonzalez, 2004b 
   Mixed  PIP 0.1-1.3 0.04-0.2 Indirect Böttjer & Morales, in press 
   Mixed  PIP 0.2-0.2 0.005-0.006 Indirect This study 
* = estimated maximum value
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Figure legends 

Fig. 1. Photographs of two adult Oithona spp. females carrying ovigerous sacs (a = O. similis

and b = O. nana), and two naupliar stages of O. nana (c = NV and d = NIV).

Fig. 2. Relative contribution (%) of the main taxonomic groups in terms of a) total abundance 

(cells mL-1) and b) biomass (μg C L-1) of the natural nano- to microplanktonic assemblages at 

the beginning of the grazing experiments with Oithona spp. nauplii (experiments 1 to 6). CI= 

ciliates, DF= dinoflagellates, SD= solitary diatoms, CHD= chain-forming diatoms, NF= 

nanoflagellates.

Fig. 3. Ingestion rates (x 103 cells nauplii-1 d-1) of Oithona spp. nauplii versus food 

concentration (x 103 cells mL-1): a) picoplankton, b) nanoflagellates, c) dinoflagellates, and d) 

diatoms; e) Chl-a ingestion (μg Chl-a nauplii-1 d-1) versus Chl-a concentration (μg Chl-a L-1).

R2 = regression coefficient; p = significance level and n = number of cases. Note the log-log 

scale for picoplankton. Regression analysis: bxay .

Fig. 4. Electivity index for the different food types ingested by Oithona spp. nauplii during 

the experiments with natural assemblages of nano- and microplankton (experiments 1 to 6), 

pico- and nanoplankton (experiments 7 and 8) or solely picoplankton (experiments 11 and 

14). NF = nanoflagellates, DF = dinoflagellates, DT = diatoms, PIPL = picoplankton, 

NANOPL = nanoplankton, BPL = bacterioplankton and CYB = cyanobacteria.

Fig. 5. Conceptual scheme of the trophic interactions linking Oithona spp. nauplii in the 

coastal upwelling area off Concepcion during the upwelling (spring/summer) period. Mean 

standing stocks (μg C L-1) are shown below the different prey/predator type (boxes). The 

numbers on the arrows represent the mean consumption rates (μg C L-1 d-1) and the 

percentages in parentheses indicate the grazing impact on the total standing stock (biomass) 

of each prey category. The thickness of the arrows indicates the strength of the interaction in 

terms of carbon uptake by the predator. Other trophic interactions are also shown: ciliates- 

prokaryotes, ciliates - nanoflagellates, ciliates - diatoms, dinoflagellates - prokaryotes, 

dinoflagellates - nanoflagellates, dinoflagellates - diatoms and nanoflagellates - prokaryotes. 

A model approach was used to predict these mean protistan grazing rates (Peters, 1994) and 
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were derived by using data from the present study, except for nanoflagellates feeding on 

prokaryotes (data from Böttjer and Morales in press).
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Figure 1 
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Figure 2 
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Figure 3
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Figure 4
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Figure 5 
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5. Discussion 

The present thesis focuses on the role and relevance of micro-organisms (<200 μm) and their 

impact on the ocean’s carbon flow in a highly productive coastal upwelling system off central 

Chile. A comprehensive 2-year data set on the structure of nanoplanktonic components and 

the impact of seasonal hydrographic variability on the abundance and biomass of the 

nanoplanktonic assemblages is discussed in section 5.1. The experimental results on rates and 

grazing impacts of protists and metazoan micro-heterotrophs, and their role in controlling 

primary production and/or different prey abundances, is discussed in section 5.2.

5.1. The impact of environmental variability on nano- and microplankton assemblages 

in the coastal upwelling area off Concepción 

In the HCS off Chile, the central-southern zone (35 - 38ºS) has been identified to present the 

most intense and persistent coastal upwelling activity, with ESSW being the main source of 

upwelled water (Strub et al., 1998). Recently, Sobarzo et al. (in press) described the seasonal 

changes in the hydrography of this region and denoted two periods with different processes 

influencing the water column structure: 1) October to March (austral spring/summer), when 

upwelling and increased solar radiation play a larger role, and 2) May to July (austral 

autumn/winter), predominated by river influx and precipitation. These environmental changes 

are expected to result in temporal changes in the functional groups and/or species composition 

of planktonic assemblages. The changes in phytoplankton biomass and composition in 

upwelling systems has usually been related to water-column stratification, nutrient 

availability, and the intensity and persistence of upwelling conditions (Hutchings et al., 1995). 

A typical annual succession of micoplankton species in upwelling areas is thought to be 

characterized by diatom spring and dinoflagellate autumn blooms (associated with highest 

Chl-a and nutrient concentrations), the winter period being dominated by small flagellate 

species (Blasco et al., 1980; Kudela et al., 2005). Recent findings from time series studies off 

Concepción partially back up and another part contradict this typical view of the annual 

succession in upwelling areas (Figure 5). 

It has been shown that rapid growth of large-sized phytoplankton (mostly chain-forming 

diatoms of Chaetoceros spp., Skeletonema spp. and Thalassiosira spp.) follows the upwelling 

of nutrient-rich ESSW (Anabalón et al., in press; González et al., in press) and, certainly, they 

are the dominant autotrophic component in the system during the spring/summer period. 

González et al. (in press) described maximum abundances of dinoflagellates and tintinnid 
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ciliates in the microplankton fraction to occur at the same time, or just slightly after, the 

chain-diatom blooms. In considering both the nano- and micro-plankton fractions, Anabalón 

et al. (in press) found maximal abundance and biomass of the dominant genera and 

morphotypes to co-occur during the upwelling period. 
Figure 5. Principal nano- and micro-planktonic components found during the annual cycle at the shelf off 
Concepción, central Chile (~36°S). Modified from Kudela et al. (2005). 

As part of this thesis, it was found that the integrated <20 μm Chl-a size fraction (11 - 86 mg 

m-2), corresponding to the nano- and picoplanktonic autotrophs, is highly variable throughout 

the annual cycle and contributes >60% of the total Chl-a whenever the latter are low (<60 mg 

m-2). The microplankton (>20 μm) is the dominant fraction of the Chl-a concentrations mostly 

during the upwelling period; nevertheless, the maximum values in the <20 μm fraction (> 60 

mg m-2) were observed during the same period of time (Böttjer & Morales, in press).

Furthermore, a comparison of the abundance and biomass of autotrophic nanoflagellates 

between the upwelling and non-upwelling periods revealed no clear seasonal pattern, in 

agreement with previous studies in other coastal upwelling systems (Probyn, 1992; Varela, 

1992; Casas et al., 1999; Tilstone et al., 2003; Barlow et al., 2005; Rodríguez et al., 2006). 

Anabalón et al. (in press) and Gonzalez et al. (in press) noted an absence of large nutrient 

differences between upwelling and non-upwelling conditions on the shelf off Concepción, 

with NO3 and Si (OH)4 concentrations not accounting for changes in the dominance of the 
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nano- and micro-plankton fractions in the study area. In contrast, Böttjer & Morales (in press)

found NO3 concentration to be significantly higher during the upwelling compared to the non-

upwelling period, although they are still relatively high during the non-upwelling period, 

probably because river inputs. It was also found that the autotrophic nanoflagellates were 

weakly correlated with NO3 concentration and, furthermore, there was a lack of correlation 

with water column stratification.. 

These findings contrast with the idea that different regimes of turbulence and/or nutrient 

availability define the size structure of phytoplankton communities, with dominance of pico- 

and nano-planktonic forms under lower turbulence-nutrient conditions and a shift to larger, 

micro-phytoplankton cells with increased turbulence and nutrient concentrations (Hutchings 

et al., 1995; Tilstone et al., 2000; Irwin et al., 2006), but point to the importance of the 

nanoplanktonic fraction as a year-round component in the coastal upwelling region off 

Concepción, contributing to sustain the system’s productivity. At the same time, the lack of 

seasonality of this size fraction implies that their potential grazers (e.g. metazoan 

microzooplankton) experience adequate food quantity and quality during the whole annual 

cycle. Which, then, are the factors that structure the autotrophic nanoflagellates off 

Concepción? The most likely seems to be the exposure to a constant grazing pressure by the 

microzooplankton holding their populations at relatively stable level throughout the year, with 

only occasional increases of one or two orders of magnitude.  

To conclude, the system under study may principally act as source and high exporter of 

organic carbon fixed by large-sized phytoplankton cells during the upwelling period but it 

also sustains maxima in small autotrophic cell abundances and biomasses under contrasting 

hydrodygraphic conditions. 

5.2. The impact of micro-heterotrophic grazing and the carbon flow in the coastal 

upwelling area off Concepción 

Heterotrophic protists have been shown to be important in controlling bacterioplankton 

abundance and biomass through a range of different ecosystems (review in Sanders et al.,

1992) although a partial control by viruses has also been reported (Fuhrman, 1999 & 2000). 

Heterotrophic nanoflagellates (HNF) have typically been considered as the main consumers of 

the picoplankton (Weisse, 1993; Christaki et al., 2002 & 2005) and less attention has been 

paid to other protists, such as the heterotrophic nanodinoflagellates (HND). Estimates of GR 

by nanoheterotrophs (HNF and HND) feeding on autotrophic and heterotrophic prokaryotes in 

the upwelling area off Concepción are well in the range of GR values reported for a variety of 
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other marine systems (lake, river, estuary, coastal, and oceanic), including different direct 

techniques (e.g. selective inhibitor method, dilution technique) or model approaches (Landry 

et al., 1984; Sherr et al., 1986; Weisse, 1990; Weisse & Scheffel-Möser, 1991; Christaki et

al., 2002 & 2005; Jeong et al., 2005; Cuevas & Morales, 2006). Results of this thesis indicate 

that the grazing impact by nanoheterotrophs (HNF and HND) on prokaryotic standing stocks 

(mean: 59%) does not differ between upwelling and non-upwelling periods, suggesting their 

high relevance in controlling prokaryotic picoplankton populations in the upwelling area off 

Concepción (Böttjer & Morales, in press). HNF and HND are an important food source for 

larger protists (Edwards et al., 1999), as well as for metazoans (Turner & Granéli, 1992). 

Results of this thesis also indicate that in the upwelling system off Concepción, metazoan 

microplankton (cyclopoid copepod nauplii of Oithona spp.) exert a significant grazing impact 

on the nanoplankton size fraction (principally on the nanoflagellate standing stocks: 34%), 

implying their ability to control these assemblages (Böttjer et al., submitted). They also 

revealed their minor role in controlling the abundance of the dominant autotrophic 

component, chain-forming diatoms, during the upwelling period.  

As a summary of these results, the overall utilization of autotrophic production (pico to 

microplankton) in the upwelling system off Concepción is represented in Figure 7. This 

scheme highlights the fate of PP due to the grazing impact of different grazers during 

contrasting hydrographic conditions and stresses the importance of the microbial food web in 

the system.  

Microzooplankton are important consumers of PP (132 - 185 %) during winter time when the 

phytoplankton community is numerically dominated by mostly small-sized autotrophic forms 

(cyanobacteria and flagellates) (Böttjer & Morales, 2005). Vargas et al. (2007) found a 

comparatively lower grazing impact on primary production (39 - 84%) during the same 

seasonal period and area of study. They, however, considered only protists grazers and 

excluded small metazoan microzooplankton in their estimates. This component has been 

shown here (Böttjer et al., submitted) to be an important predator upon the nanoplankton 

during the spring/summer period, including autotrophic nanoflagellates and nanodiatoms; 

they are also expected to be important grazers during the autumn/winter period since they are 

present all year-round, as well as their main food. Excluding metazoan microzooplankton 

underestimates the total micro-heterotrophic grazing impact by two to three times.  

The scenario of microzooplankton herbivory in the coastal system off Concepción, Chile 

changes during the austral/spring summer, upwelling period, when the system becomes 

dominated by large autotrophic forms (chain-forming diatoms), generating dense blooms and 
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high primary production values (Montecino et al., 2006; Vargas et al., 2007 González et al.,

in press). Attempts by Böttjer & Morales (unpublished data) to estimate microzooplankton 

grazing by carrying out dilution experiments during the upwelling period, when Chl-a

concentrations exceeded ~5 mg Chl-a m-3 (range: 5.6 – 23.3 mg Chl-a m-3), displayed 

negative microzooplankton grazing, that is, higher net growth in less diluted treatments.  

Figure 7. Utilization of primary production by different planktonic size fractions during two contrasting seasons 
in the coastal upwelling system off Concepción, central Chile. Data are from the studies of Cuevas et al. (2004), 
Böttjer & Morales (2005), Vargas et al. (2007) and Böttjer et al. (submitted). 

Certainly, the dilution method is not without problems, in particular when feeding becomes 

saturated at very high food levels (Landry & Hasset, 1982; Gifford, 1988; Gallegos, 1989; 

Evans & Paranjape, 1992; Dolan et al., 2000). That could possibly explain the “failure” of the 

dilution method during this thesis experiments, although the same approach has been 

successfully applied in other productive systems with high Chl-a concentrations (e.g. 4 - 55 

mg Chl-a m-3; Neuer & Cowles, 1994; Strom & Strom, 1996). The recent publication of 

Vargas et al. (2007) described a moderate impact of protists (11 - 18%) on a relatively high 

primary production (5061 - 5725 mg C m-2 d-1) during the spring/summer period off 

Concepción by applying the size-fractionation method (Capriulo & Carpenter, 1980). They 
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concluded that the microzooplankton community is not able to keep up with the 

phytoplankton biomass growth when diatoms are forming into dense blooms, even though 

larger-sized micro-heterotrophs, known to be able to feed on diatoms, are concurrently 

present. Therefore, what might be the explanation for the phytoplankton to be able to escape 

the control of micro- and meso-zooplankton grazing during the upwelling period in this 

system? Irigoien et al. (2005) have recently posed the hypothesis that blooming species 

(diatoms and dinoflagellates), through a combination of predation avoidance mechanisms, 

elude predation by zooplankton, opening so called “loopholes”. Bloom forming diatoms have 

evolved morphological (e.g. increasing cell size by forming chains, spines, frustules) or 

chemical (aldehydes) defense strategies to deter planktonic protist grazers (Smetacek, 2001; 

Strom, 2002) as well as metazoans (reviewed in Pohnert, 2005). The phenomenon of chemical 

defense has received little attention (Wolfe, 2000 fide Strom, 2002), and demonstrating that 

size is truly an effective strategy against predation needs some further experimentation. Top-

down grazing upon heterotrophic protists by mesozooplankton, in particular copepods, may 

further elucidate the lack of control of phytoplankton blooms by microzooplankton herbivory 

(trophic cascading). Mesozooplankton abundance and biomass has been shown to increase 

during the spring/summer upwelling period in the system under study (Escribano et al., in 

press) but Vargas et al. (2007) imply that they only incorporate a very small part of the PP 

(~1%).

Altogether, the findings of this dissertation, in agreement with the studies of Troncoso et al. 

(2003), Cuevas et al. (2004), and Vargas et al. (2007), suggest that the microbial food web is 

a fundamental and permanent component in the upwelling system off Concepción. However, 

the microbial food web has usually been considered to be an inefficient carbon pathway and a 

sink for biogenic carbon in terms of recycling within the euphotic zone rather than transfer 

onto higher trophic levels (e.g. Legendre & Le Fèvre, 1995). I propose that this hypothesis 

needs a careful revision since the upwelling system off Concepcion is highly productive 

during the whole year due to the persistence of the microbial food web. The microbial food 

web does not strictly include various grazing steps to incorporate the photosynthetically fixed 

carbon into higher trophic levels. Small sized autotrophs can be channelled to higher trophic 

levels as effective as their larger counterparts (e.g. cyanobacteria  ciliate  fish or 

autotrophic nanoflagellate  metazoan microzooplankton  fish, compared to diatom 

herbivorous zooplankton  fish). Therefore, the microbial food web might transfer carbon as 

efficient as the herbivorous food web and, thereby, be able to sustain a high, year-round 

productivity of the coastal upwelling system off Concepción.   
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The main goal of this thesis was to elucidate the relevance of small micro-organisms and the 

carbon flow in a highly productive, coastal upwelling system; a “little-known, yet fascinating” 

part of marine microbial ecology and by doing so, the following has been concluded:

1. Minor impact of the strongly seasonal hydrographic variability on the abundance and 

biomass of nanoplanktonic assemblages 

2. Grazing by nano-heterotrophs controls prokaryotic picoplankton populations 

3. Total microzooplankton (including micro- and nano-heterotrophs) exert an important 

impact on the potential primary production (>100%) in the system during the non-

upwelling, autumn/winter period. 

4. Metazoan microzooplankton (Oithona spp. nauplii) control the nanoplankton 

assemblage and, thereby, represent an important trophic intermediate between the 

classical and microbial food webs in this coastal upwelling system. 

5. The microbial food web is a fundamental and permanent feature of the trophic 

pathways in the water column in the system and probably it is also efficient in 

channelling primary and/or secondary production to higher trophic levels 
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6. Perspectives

This thesis revealed several new aspects in the food web dynamics of the coastal upwelling 

area off central Chile, and further knowledge on the carbon flow in this system was gained. 

Yet, a lot of new questions emerged, certainly a sign of the vitality of marine microbial 

ecology. One ends up with more questions than answers, the unknowns still outnumber the 

established facts, and with this, leaving much room for further research. This chapter will 

briefly present the most burning issues. 

Certainly, the most ‘urgent’ topic is the pelagic food web structure and the trophic transfer 

between the herbivorous and microbial food web. The upwelling area off Concepción is 

highly productive; most of the photosynthetically fixed carbon is channelled through the 

microbial food web, which actually has been described as inefficient in trophic transfer. 

Further explorations and possibly a revision of the microbial food web model and the related 

carbon transfer in highly productive regions are strongly needed in order to understand the 

year-round productivity in these systems. 

Studies of pure cultures of micro-organisms definitely provide fundamental information of 

important species and to culture a species under carefully controlled conditions allows the 

examination of its biology in the absence of potentially confounding interactions with other 

living organisms. Therefore, the understanding of the ecological role of micro-organisms in 

nature might improve with more species brought into culture. Predominant protists found in 

the coastal waters off Concepción could be isolated from natural assemblages (Caron, 1993; 

Gifford, 1993; Lessard, 1993) to examine their nutritional mode, feeding behaviour, feeding 

rates as well as preferences and/or growth rates of specific species. Nevertheless, it should be 

kept in mind that studies of feeding and growth rates under natural conditions are further 

required and the application of newer technologies such as flow cytometry should facilitate 

such studies (Sherr & Sherr, 2002). 

Dinoflagellates are known for their complex feeding behaviours and apparatus that enable 

them to ingest prey as large as themselves, as well as chains and colonies (Strom & Strom, 

1996; Jacobson, 1999), and also choreotrich ciliates have been reported to feed on prey 

organisms that measure nearly half of their oral diameter (Jonsson, 1986). Nevertheless, dense 

phytoplankton blooms occur during the upwelling period in the system under study and 

emphasis needs to be placed on the understanding of the processes that regulate the 

uncoupling of phytoplankton growth and microzooplankton grazing. Why are large-celled, 

herbivorous protists not capable of controlling the enormous biomass build-up of bloom-

forming diatoms by using their various different feeding modes? Do defense strategies (e.g.
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chemical, morphological) enable the phytoplankton to escape microzooplankton grazing? 

These are only some questions that should be addressed in future projects on phytoplankton-

microzooplankton interactions under upwelling conditions. 

Microbial composition and diversity are influenced by environmental (e.g. turbulence, organic 

substrates and nutrients) and biological factors (competition and predation), and in this 

context, viral infection has been recently assumed as one of the key factors in regulating the 

structure and composition of prokaryotic communities in aquatic ecosystems (e.g. Weinbauer 

& Rassoulzadegan, 2004; Winter et al., 2005; Bouvier & del Giorgio, 2007). Viruses 

infecting eukaryotic, marine phytoplankton (diatoms, chrysophytes, pyrmnesiophytes, 

haptophytes, rhaphidophytes and cryptomonads) are found in the euphotic zone and are 

abundant, so that they might control algal blooms (Fuhrmann, 1999). So far, little attention 

has been paid to the role and relevance of viruses and virus-induced mortality of bacteria and 

specific phytoplankton in the system under study, but certainly need to be included in further 

microbial food web studies. 

The application of molecular biology tools remains another challenge. Molecular biology has 

swept through the field of aquatic microbial ecology and the phylogenetic diversity and gene 

function of bacteria and protists have revealed spectacular discoveries (e.g. Giovannoni et al.,

1999). Protists biodiversity through DNA analysis would be of great interest for a future 

development and molecular tools could be included in upcoming grazing experiments to study 

the effect of predation on prey community structure: Are some prey species selected? Does 

selection of certain prey species favour the dominance and persistence of other species? This 

new line of research is only the beginning since these novel approaches undoubtedly continue 

to be a major theme in the field of marine microbial ecology.  
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