209 research outputs found

    Concurrent Computing with Shared Replicated Memory

    Get PDF
    The behavioural theory of concurrent systems states that any concurrent system can be captured by a behaviourally equivalent concurrent Abstract State Machine (cASM). While the theory in general assumes shared locations, it remains valid, if different agents can only interact via messages, i.e. sharing is restricted to mailboxes. There may even be a strict separation between memory managing agents and other agents that can only access the shared memory by sending query and update requests to the memory agents. This article is dedicated to an investigation of replicated data that is maintained by a memory management subsystem, whereas the replication neither appears in the requests nor in the corresponding answers. We show how the behaviour of a concurrent system with such a memory management can be specified using concurrent communicating ASMs. We provide several refinements of a high-level ground model addressing different replication policies and internal messaging between data centres. For all these refinements we analyse their effects on the runs such that decisions concerning the degree of consistency can be consciously made.Comment: 23 page

    ASMs and Operational Algorithmic Completeness of Lambda Calculus

    Get PDF
    We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family. The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines. This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.Comment: 37 page

    Quasiperiodicity and non-computability in tilings

    Full text link
    We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any effectively closed set can be recursively transformed into a tile set so that the Turing degrees of the resulted tilings consists exactly of the upper cone based on the Turing degrees of the later.Comment: v3: the version accepted to MFCS 201

    An “orientation sphere” visualization for examining animal head movements

    Get PDF
    Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals

    Formalising the Continuous/Discrete Modeling Step

    Full text link
    Formally capturing the transition from a continuous model to a discrete model is investigated using model based refinement techniques. A very simple model for stopping (eg. of a train) is developed in both the continuous and discrete domains. The difference between the two is quantified using generic results from ODE theory, and these estimates can be compared with the exact solutions. Such results do not fit well into a conventional model based refinement framework; however they can be accommodated into a model based retrenchment. The retrenchment is described, and the way it can interface to refinement development on both the continuous and discrete sides is outlined. The approach is compared to what can be achieved using hybrid systems techniques.Comment: In Proceedings Refine 2011, arXiv:1106.348

    Sex differences in condition dependence of natal dispersal in a large herbivore: dispersal propensity and distance are decoupled

    Get PDF
    International audienceEvolution should favour plasticity in dispersal decisions in response to spatial heterogeneity in social and environmental contexts. Sex differences in individual optimization of dispersal decisions are poorly documented in mammals, because species where both sexes commonly disperse are rare. To elucidate the sex-specific drivers governing dispersal, we investigated sex differences in condition dependence in the propensity and distance of natal dispersal in one such species, the roe deer, using fine-scale monitoring of 146 GPS-collared juveniles in an intensively monitored population in southwest France. Dispersal propensity increased with body mass in males such that 36% of light individuals dispersed, whereas 62% of heavy individuals did so, but there was no evidence for condition dependence in dispersal propensity among females. By contrast, dispersal distance increased with body mass at a similar rate in both sexes such that heavy dispersers travelled around twice as far as light dispersers. Sex differences in the strength of condition-dependent dispersal may result from different selection pressures acting on the behaviour of males and females. We suggest that females disperse prior to habitat saturation being reached, likely in relation to the risk of inbreeding. By contrast, natal dispersal in males is likely governed by competitive exclusion through male–male competition for breeding opportunities in this strongly territorial mammal. Our study is, to our knowledge, a first demonstration that condition dependence in dispersal propensity and dispersal distance may be decoupled, indicating contrasting selection pressures drive the behavioural decisions of whether or not to leave the natal range, and where to settle

    FAQ

    Full text link

    Estimates for energy expenditure in free‐living animals using acceleration proxies; a reappraisal

    Get PDF
    It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal-attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement-based power. Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings. Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement-related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non-movement-related factors, such as heat production, increases. Overall, DBA seems to be a substantive proxy for movement-based power but consideration of other movement-related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement-based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration

    Implications of location accuracy and data volume for home range estimation and fine-scale movement analysis: comparing Argos and Fastloc-GPS tracking data

    Get PDF
    The advent of Fastloc-GPS is helping to transform marine animal tracking by allowing the collection of high-quality location data for species that surface only briefly. We show how the improved location accuracy of Fastloc-GPS compared to Argos tracking is expected to lead to far more accurate home range estimates, particularly for animals moving over the scale of a few km. We reach this conclusion using simulated data and home range estimates derived from empirical tracking data for green sea turtles (Chelonia mydas) equipped with Argos linked Fastloc-GPS tags at three different foraging areas (western Indian Ocean, Western Australia, and Caribbean). Poor-quality Argos locations (e.g., location classes A, B) produced home range estimates ranging from 10 to 100 times larger than those derived from Fastloc-GPS data, whereas high-quality Argos locations (location classes 1–3) produced home range estimates that were generally comparable to those derived from Fastloc-GPS data. However, the limited number of Argos class 1–3 locations obtained for all three turtles—an average of 14.6 times more Fastloc-GPS locations were obtained compared to Argos class 1–3 locations—resulted in blurred patterns of space use. In contrast, the high volume of Fastloc-GPS locations revealed fine-scale movements in striking detail (i.e., use of discrete patches separated by just a few 100 m). We recommend careful consideration of the effects of location accuracy and data volume when developing sampling regimes for marine tracking studies and make recommendations regarding how sampling can be standardized to facilitate meaningful spatial and temporal comparisons of space use
    • 

    corecore