
ASMs and Operational Algorithmic Completeness of

Lambda Calculus

Marie Ferbus-Zanda, Serge Grigorieff

To cite this version:

Marie Ferbus-Zanda, Serge Grigorieff. ASMs and Operational Algorithmic Completeness of
Lambda Calculus. Lecture notes in computer science, springer, 2010, LNCS 6300, pp.00. <hal-
00525507>

HAL Id: hal-00525507

https://hal.archives-ouvertes.fr/hal-00525507

Submitted on 13 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47108525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00525507

ASMs and Operational Algorithmic

Completeness of Lambda Calculus

Marie Ferbus-Zanda ∗

ferbus@liafa.jussieu.fr

Serge Grigorieff ∗

http://www.liafa.jussieu.fr/∼seg

seg@liafa.jussieu.fr

October 13, 2010

Contents

1 Introduction 3

1.1 Operational versus Denotational Completeness 3
1.2 Lambda Calculus and Operational Completeness 4
1.3 Road Map . 5

2 ASMs 6

2.1 The Why and How of ASMs on a Simple Example 6
2.2 Gurevich Sequential Thesis . 7
2.3 The ASM Modelization Approach 8
2.4 Vocabulary and States of an ASM 10
2.5 Initialization Maps . 11
2.6 ASM Programs . 12
2.7 Action of an L-Program on an L-State 13

2.7.1 Active Updates and Clashes 13
2.7.2 Halt and Fail . 14
2.7.3 Successor State . 15

2.8 Definition of ASMs and ASM Runs 16
2.9 Operational Completeness: the ASM Theorem 17

∗LIAFA, CNRS & Université Paris Diderot - Paris 7, Case 7014 75205 Paris Cedex 13

1

3 Lambda Calculus 18

3.1 Lambda Terms . 18
3.2 β-Reduction . 19
3.3 Normal Forms . 20
3.4 Lists in Λ-Calculus . 21
3.5 Booleans in Λ-Calculus . 21
3.6 Integers in Λ-Calculus . 22
3.7 Datatypes in Λ-Calculus . 23
3.8 Lambda Calculus with Benign Constants 24
3.9 Good F-Terms . 25

4 Variations on Curry’s Fixed Point 27

4.1 Curry’s Fixed Point . 27
4.2 Padding Reductions . 27
4.3 Constant Cost Updates . 28
4.4 Constant Cost Conditional Updates 29

5 ASMs and Lambda Calculus 31

5.1 Datatypes and ASM Base Sets 31
5.2 Tailoring Lambda Calculus for an ASM 32
5.3 Main Theorem for Type 0 ASMs 32
5.4 Main Theorem for All ASMs 33

Abstract

We show that lambda calculus is a computation model which can
step by step simulate any sequential deterministic algorithm for any
computable function over integers or words or any datatype. More
formally, given an algorithm above a family of computable functions
(taken as primitive tools, i.e., kind of oracle functions for the algo-
rithm), for every constant K big enough, each computation step of
the algorithm can be simulated by exactly K successive reductions in
a natural extension of lambda calculus with constants for functions in
the above considered family.
The proof is based on a fixed point technique in lambda calculus and
on Gurevich sequential Thesis which allows to identify sequential de-
terministic algorithms with Abstract State Machines.
This extends to algorithms for partial computable functions in such a
way that finite computations ending with exceptions are associated to
finite reductions leading to terms with a particular very simple feature.

2

keywords. ASM, Lambda calculus, Theory of algorithms, Operational se-
mantics

1 Introduction

1.1 Operational versus Denotational Completeness

Since the pioneering work of Church and Kleene, going back to 1935, many
computation models have been shown to compute the same class of func-
tions, namely, using Turing Thesis, the class of all computable functions.
Such classes are said to be Turing complete or denotationally algorithmically
complete.

This is a result about crude input/output behaviour. What about the
ways to go from the input to the output, i.e., the executions of algorithms
in each of these computation models? Do they constitute the same class?
Is there a Thesis for algorithms analog to Turing Thesis for computable
functions?

As can be expected, denotational completeness does not imply opera-
tional completeness. Clearly, the operational power of machines using mas-
sive parallelism cannot be matched by sequential machines. For instance,
on networks of cellular automata, integer multiplication can be done in real
time (cf. Atrubin, 1962 [1], see also Knuth, [21] p.394-399), whereas on Tur-
ing machines, an Ω(n/ log n) time lower bound is known. Keeping within
sequential computation models, multitape Turing machines have greater op-
erational power than one-tape Turing machines. Again, this is shown using
a complexity argument: palindromes recognition can be done in linear time
on two-tapes Turing machines, whereas it requires computation time O(n2)
on one-tape Turing machines (Hennie, 1965 [18], see also [5, 24]).

Though resource complexity theory may disprove operational algorithmic
completeness, there was no formalization of a notion of operational complete-
ness since the notion of algorithm itself had no formal mathematical mod-
elization. Tackled by Kolmogorov in the 50’s [20], the question for sequential
algorithms has been answered by Gurevich in the 80’s [11, 12, 13] (see [6] for a
comprehensive survey of the question), with their formalization as “evolving
algebras” (now called “abstract state machines” or ASMs) which has lead to
Gurevich’s sequential Thesis.

Essentially, an ASM can be viewed as a first order multi-sorted structure

3

and a program which modifies some of its predicates and functions (called
dynamic items). Such dynamic items capture the moving environment of
a procedural program. The run of an ASM is the sequence of structures
– also called states – obtained by iterated application of the program. The
program itself includes two usual ingredients of procedural languages, namely
affectation and the conditional “if. . . then. . . else. . . ”, plus a notion of parallel
block of instructions. This last notion is a key idea which is somehow a
programming counterpart to the mathematical notion of system of equations.

Gurevich’s sequential Thesis [12, 16, 17] asserts that ASMs capture the
notion of sequential algorithm. Admitting this Thesis, the question of oper-
ational completeness for a sequential procedural computation model is now
the comparison of its operational power with that of ASMs.

1.2 Lambda Calculus and Operational Completeness

In this paper we consider lambda calculus, a subject created by Church
and Kleene in the 30’s, which enjoys a very rich mathematical theory. It
may seem a priori strange to look for operational completeness with such a
computation model so close to an assembly language (cf. Krivine’s papers
since 1994, e.g., [22]). It turns out that, looking at reductions by groups
(with an appropriate but constant length), and allowing one step reduction
of primitive operations, lambda calculus simulates ASMs in a very tight way.
Formally, our translation of ASMs in lambda calculus is as follows. Given
an ASM, we prove that, for every integer K big enough (the least such
K depending on the ASM), there exists a lambda term θ with the following
property. Let at1, . . . , a

t
p be the values (coded as lambda terms) of all dynamic

items of the ASM at step t, if the run does not stop at step t then

θat1 . . . a
t
p

K reductions
︷ ︸︸ ︷
→ · · · → θat+1

1 . . . at+1
p .

If the run stops at step t then the left term reduces to a term in normal form
which gives the list of outputs if they are defined. Thus, representing the
state of the ASM at time t by the term θat1 . . . a

t
p, a group of K successive

reductions gives the state at time t+1. In other words, K reductions faithfully
simulate one step of the ASM run. Moreover, this group of reductions is that
obtained by the leftmost redex reduction strategy, hence it is a deterministic
process. Thus, lambda calculus is operationally complete for deterministic
sequential computation.

4

Let us just mention that adding to lambda calculus one step reduction of
primitive operations is not an unfair trick. Every algorithm has to be “above”
some basic operations which are kind of oracles: the algorithm decomposes
the computation in elementary steps which are considered as atomic steps
though they obviously themselves require some work. In fact, such basic
operations can be quite complex: when dealing with integer matrix product
(as in Strassen’s algorithm in time O(nlog 7)), one considers integer addition
and multiplication as basic... Building algorithms on such basic operations
is indeed what ASMs do with the so-called static items, cf. §2.3, Point 2.

The proof of our results uses Curry’s fixed point technique in lambda
calculus plus some padding arguments.

1.3 Road Map

This paper deals with two subjects which have so far not been much related:
ASMs and lambda calculus. To make the paper readable to both ASM
and lambda calculus communities, the next two sections recall all needed
prerequisites in these two domains (so that most readers may skip one of
these two sections).

What is needed about ASMs is essentially their definition, but it cannot
be given without a lot of preliminary notions and intuitions. Our presentation
of ASMs in §2 differs in inessential ways from Gurevich’s one (cf. [13, 15,
17, 10]). Crucial in the subject (and for this paper) is Gurevich’s sequential
Thesis that we state in §2.2. We rely on the literature for the many arguments
supporting this Thesis.

§3 recalls the basics of lambda calculus, including the representation of
lists and integers and Curry fixed point combinator.

The first main theorem in §5.3 deals with the simulation in lambda calcu-
lus of sequential algorithms associated to ASMs in which all dynamic symbols
are constant ones (we call them type 0 ASMs). The second main theorem in
§5.4 deals with the general case.

5

Euclid’s algorithm in Pascal

while b > 0 do begin

z := a;
a := b;
b := rem (z, b);
end;

gcd := a.

Euclid’s algorithm in ASM

if 0 < b then

∣
∣
∣
∣

a := b
b := rem (a, b)

(In both programs, a, b are inputs and a is the output)

Figure 1: Pascal and ASM programs for Euclid’s algorithm

2 ASMs

2.1 The Why and How of ASMs on a Simple Example

Euclid’s Algorithm Consider Euclid’s algorithm to compute the greatest
common divisor (gcd) of two natural numbers. It turns out that such a simple
algorithm already allows to pinpoint an operational incompleteness in usual
programming languages. Denoting by rem(u, v) the remainder of u modulo
v, this algorithm can be described as follows1

Given data: two natural numbers a, b
While b 6= 0 replace the pair (a, b) by (b, rem(a, b))
When b = 0 halt: a is the wanted gcd

Observe that the the pair replacement in the above while loop involves some
elementary parallelism which is the algorithmic counterpart to co-arity, i.e.,
the consideration of functions with range in multidimensional spaces such as
the N

2 → N
2 function (x, y) 7→ (y, rem(x, y)).

Euclid’s Algorithm in Pascal In usual programming languages, the
above simultaneous replacement is impossible: affectations are not done in
parallel but sequentially. For instance, no Pascal program implements it as
it is, one can only get a distorted version with an extra algorithmic contents
involving a new variable z, cf. Figure 1.

1Sometimes, one starts with a conditional swap: if a < b then a, b are exchanged. But
this is done in the first round of the while loop.

6

An ASM for Euclid’s Algorithm Euclid’s algorithm has a faithful for-
malization using an ASM. The vertical bar on the left in the ASM program
(cf. Figure 1) tells that the two updates are done simultaneously and in-
dependently. Initialization gives symbols a, b the integer values of which we
want to compute the gcd. The semantical part of the ASM involves the
set N of integers to interpret all symbols. Symbols 0, <,=, rem have fixed
interpretations in integers which are the expected ones. Symbols a, b have
varying interpretations in the integers. The sequence of values taken by a, b
constitutes the run of the ASM.
When the instruction gets void (i.e., when b is null) the run stops and the
value of the symbol a is considered to be the output.

2.2 Gurevich Sequential Thesis

Yuri Gurevich has gathered as three Sequential Postulates (cf. [17, 10]) some
key features of deterministic sequential algorithms for partial computable
functions (or type 1 functionals).

I (Sequential time). An algorithm is a deterministic state-transition sys-
tem. Its transitions are partial functions.
Non deterministic transitions and even nonprocedural input/output
specifications are thereby excluded from consideration.

II (Abstract states). States are multitructures2, sharing the same fixed,
finite vocabulary. States and initial states are closed under isomor-
phism. Transitions preserve the domain, and transitions and isomor-
phisms commute.

III (Bounded exploration). Transitions are determined by a fixed finite
“glossary” of “critical” terms. That is, there exists some finite set of
(variable-free) terms over the vocabulary of the states such that states
that agree on the values of these glossary terms also agree on all next-
step state changes.

Gurevich, 2000 [17], stated an operational counterpart to Church’s Thesis
: Thesis.[Gurevich’s sequential Thesis] Every sequential algorithm satisfies
the Sequential Postulates I-III.

2In ASM theory, an ASM is, in fact, a multialgebra (cf. point 1 of Remark §2.1).

7

2.3 The ASM Modelization Approach

Gurevich’s postulates lead to the following modelization approach (we depart
in non essential ways from [10], see Remark 2.1).

1. The base sets. Find out the underlying families of objects involved
in the given algorithm, i.e., objects which can be values for inputs,
outputs or environmental parameters used during the execution of the
algorithm. These families constitute the base sets of the ASM. In Eu-
clid’s algorithm, a natural base set is the set N of natural integers.

2. Static items. Find out which particular fixed objects in the base sets
are considered and which functions and predicates over/between the
base sets are viewed as atomic in the algorithm, i.e., are not given any
modus operandi. Such objects, functions and predicates are called the
primitive or static items of the ASM. They do not change value through
transitions. In Euclid’s algorithm, static items are the integer 0, the
rem function and the < predicate.

3. Dynamic items. Find out the diverse objects, functions and predicates
over the base sets of the ASM which vary through transitions. Such
objects, functions and predicates are called the dynamic items of the
ASM. In Euclid’s algorithm, these are a, b.

4. States: from a multi-sorted partial structure to a multi-sorted partial
algebra. Collecting all the above objects, functions and predicates leads
to a first-order multi-sorted structure of some logical typed language:
any function goes from some product of sorts into some sort, any pred-
icate is a relation over some sorts. However, there is a difference with
the usual logical notion of multi-sorted structure: predicates and func-
tions may be partial. A feature which is quite natural for any theory
of computability, a fortiori for any theory of algorithms.
To such a multi-sorted structure one can associate a multi-sorted alge-
bra as follows. First, if not already there, add a sort for Booleans. Then
replace predicates by their characteristic functions In this way, we get a
multi-sorted structure with partial functions only, i.e. a multialgebra.

5. Programs. Finally, the execution of the algorithm can be viewed as
a sequence of states. Going from one state to the next one amounts

8

to applying to the state a particular program – called the ASM pro-
gram – which modifies the interpretations of the sole dynamic symbols
(but the universe itself and the interpretations of the static items re-
main unchanged). Thus, the execution of the algorithm appears as an
iterated application of the ASM program. It is called the run of the
ASM.
Using the three above postulates, Gurevich [16, 17] proves that quite el-
ementary instructions – namely blocks of parallel conditional updates –
suffice to get ASM programs able to simulate step by step any deter-
ministic procedural algorithm.

6. Inputs, initialization map and initial state. Inputs correspond to the
values of some distinguished static symbols in the initial state, i.e., we
consider that all inputs are given when the algorithm starts (though
questionable in general, this assumption is reasonable when dealing
with algorithms to compute a function). All input symbols have arity
zero for algorithms computing functions. Input symbols with non zero
arity are used when dealing with algorithms for type 1 functionals.
The initialization map associates to each dynamic symbol a term built
up with static symbols. In an initial state, the value of a dynamic
symbol is required to be that of the associated term given by the ini-
tialization map.

7. Final states and outputs. There may be several outputs, for instance if
the algorithm computes a function N

k → N
ℓ with ℓ ≥ 2.

A state is final when, applying the ASM program to that state,

(a) either the Halt instruction is executed (Explicit halting),

(b) or no update is made (i.e. all conditions in conditional blocks of
updates get value False) (Implicit halting) .

In that case, the run stops and the outputs correspond to the values
of some distinguished dynamic symbols. For algorithms computing
functions, all output symbols are constants (i.e. function symbols with
arity zero).

8. Exceptions. There may be a finite run of the ASM ending in a non final
state. This corresponds to exceptions in programming (for instance a
division by 0) and there is no output in such cases. This happens when

9

(a) either the Fail instruction is executed (Explicit failing),

(b) or there is a clash between two updates which are to be done
simultaneously (Implicit failing).

Remark 2.1. Let us describe how our presentation of ASMs (slightly) departs
from [10].
1. We stick to what Gurevich says in §.2.1 of [14] (Lipari Guide, 1993): “Ac-
tually, we are interested in multi-sorted structures with partial operations”.
Thus, we do not regroup sorts into a single universe and do not extend func-
tions with the undef element.
2. We add the notion of initialization map which brings a syntactical coun-
terpart to the semantical notion of initial state. It also rules out any question
about the status of initial values of dynamic items which would not be in-
puts.
3. We add explicit acceptance and rejection as specific instructions in ASM
programs. Of course, they can be simulated using the other ASM instruc-
tions (so, they are syntactic sugar) but it may be convenient to be able to
explicitly tell there is a failure when something like a division by zero is to
be done. This is what is done in many programming languages with the so-
called exceptions. Observe that Fail has some common flavor with undef.
However, Fail is relative to executions of programs whereas undef is relative
to the universe on which the program is executed.
4. As mentioned in §2.1, considering several outputs goes along with the idea
of parallel updates.

2.4 Vocabulary and States of an ASM

ASM vocabularies and ASM states correspond to algebraic signatures and
algebras. The sole difference is that an ASM vocabulary comes with an extra
classification of its symbols as static, dynamic, input and output carrying the
intuitions described in points 2, 3, 6, 7 of §2.3.

Definition 2.2. 1. An ASM vocabulary is a finite family of sorts s1, . . . , sm
and a finite family L of function symbols with specified types of the form si
or si1 ×· · ·× sik → si (function symbols with type si are also called constants
of type si). Four subfamilies of symbols are distinguished:

Lsta (static symbols) , I (input symbols)
Ldyn (dynamic symbols) , O (output symbols)

10

such that Lsta,Ldyn is a partition of L and I ⊆ Lsta and O ⊆ Ldyn. We
also require that there is a sort to represent Booleans and that Lsta contains
symbols to represent the Boolean items (namely symbols True, False, ¬, ∧,
∨) and, for each sort s, a symbol =s to represent equality on sort s.

2. Let L be an ASM vocabulary with n sorts. An L-state is any n-sort
multialgebra S for the vocabulary L. The multi-domain of S is denoted by
(U1, . . . ,Um). We require that

i. one of the Ui’s is Bool with the expected interpretations of symbols
True, False,s ¬, ∧, ∨,

ii. the interpretation of the symbol =i is usual equality in the interpretation
Ui of sort si.

In the usual way, using variables typed by the n sorts of L, one constructs
typed L-terms and their types. The type of a term t is of the form si or
si1 × · · · × sik → si where si1 , . . . , sik are the types of the different variables
occurring in t. Ground terms are those which contain no variable. The
semantics of typed terms is the usual one.

Definition 2.3. Let L be an ASM vocabulary and S an ASM L-state. Let t be
a typed term with type si1 ×· · ·×si1 → si. We denote by tS its interpretation
in S, which is a function Ui1 ×· · ·×Uiℓ → Ui. In case ℓ = 0, i.e., no variable
occurs, then tS is an element of Ui.

It will be convenient to lift the interpretation of a term with ℓ variables
to be a function with any arity k greater than ℓ.

Definition 2.4. Let L be an ASM vocabulary and S an ASM L-state with
universe U . Suppose σ : {1, . . . , ℓ} → {1, . . . , p} is any map and τ : {1, . . . , p} →
{1, . . . , m} is a distribution of (indexes of) sorts. Suppose t is a typed term of
type sτ(σ(1))×· · ·×sτ(σ(ℓ)) → si. We let tτ,σ

S
be the function Usτ(1)×· · ·×Usτ(p) →

Ui such that, for all (a1, · · · , ap) ∈ Usτ(1) × · · · × Usτ(p),

tτ,σ
S

(a1, · · · , ak) = tS(aσ(1), · · · , aσ(ℓ)) .

2.5 Initialization Maps

L-terms with no variable are used to name particular elements in the universe
U of an ASM whereas L-terms with variables are used to name particular
functions over U .

11

Using the lifting process described in Definition 2.4, one can use terms
containing less than k variables to name functions with arity k.

Definition 2.5. 1, Let L be an ASM vocabulary. An L-initialization map
ξ has domain family L(dyn) of dynamic symbols and satisfies the following
condition:

if α is a dynamic function symbol with type sτ(1)×· · ·×sτ(ℓ) → si
then ξ(α) is a pair (σ, t) such that σ : {1, . . . , ℓ} → {1, . . . , p}
and t is a typed L-term with type sτ(σ(1)) × · · · × sτ(σ(ℓ)) → si
which is built with the sole static symbols (with τ : {1, . . . , p} →
{1, . . . , m}).

2. Let ξ be an L-initialization map. An L-state S is ξ-initial if, for any
dynamic function symbol α, if ξ(α) = (σ, t) then the interpretation of α in S
is tτ,σ

S
.

3. An L-state is initial if it is ξ-initial for some ξ.

Remark 2.6. Of course, the values of static symbols are basic ones, they are
not to be defined from anything else: either they are inputs or they are the
elementary pieces upon which the ASM algorithm is built.

2.6 ASM Programs

Definition 2.7. 1. The vocabulary of ASM programs is the family of symbols

{Skip , Halt , Fail , := ,

∣
∣
∣
∣

, if . . . then . . . else . . .}

2. (L-updates). Given an ASM vocabulary L, a sequence of k + 1 ground
typed L-terms t1, . . . , tk, u (i.e. typed terms with no variable), a dynamic
function symbol α, if α(t1, . . . , tk) is a typed L-term with the same type as u
then the syntactic object α(t1, . . . , tk) := u is called an L-update.

3. (L-programs). Given an ASM vocabulary L, the L programs are obtained
via the following clauses.

i. (Atoms). Skip, Halt, Fail and all L-updates are L-programs.

ii. (Conditional constructor). Given a ground typed term C with Boolean
type and two L-programs P,Q, the syntactic object

if C then P else Q

is an L-program.

12

iii. (Parallel block constructor). Given n ≥ 1 and L-programs P1, . . . , Pn,
the syntactic object (with a vertical bar on the left)

∣
∣
∣
∣
∣
∣
∣

P1
...
Pn

is an L-program.

The intuition of programs is as follows.

• Skip is the program which does nothing. Halt halts the execution in
a successful mode and the outputs are the current values of the output
symbols. Fail also halts the execution but tells that there is a failure,
so that there is no meaningful output.

• Updates modify the interpretations of dynamic symbols, they are the
basic instructions. The left member has to be of the form α(· · ·) with
α a dynamic symbol because the interpretations of static symbols do
not vary.

• The conditional constructor has the usual meaning whereas the par-
allel constructor is a new control structure to get simultaneous and
independent executions of programs P1, . . . , Pn.

2.7 Action of an L-Program on an L-State

2.7.1 Active Updates and Clashes

In a program the sole instructions which have some impact are updates.
They are able to modify the interpretations of dynamic symbols on the sole
tuples of values which can be named by tuples of ground terms. Due to
conditionals, not every update occurring in a program will really be active.
it does depend on the state to which the program is applied. Which symbols
on which tuples are really active and what is their action? This is the object
of the next definition.

Definition 2.8 (Active updates). Let L be an ASM vocabulary, P an L-
program and S an L-state. Let Update(P) be the family of all updates occur-

13

ring in P . The subfamily Active (S, P) ⊆ Update(P) of so-called (S, P)-
active updates is defined via the following induction on P :

Active (S, Skip) = ∅
Active (S, α(t1, . . . , tk) := u) = {α(t1, . . . , tk) := u}

Active (S, if C then Q else R) =

Active (S, Q) if CS = True

Active (S, R) if CS = False

∅ if CS /∈ Bool

Active (S,

∣
∣
∣
∣
∣
∣
∣

P1
...
Pn

) = Active (S, P1) ∪ . . . ∪ Active (S, Pn)

The action of a program P on a state S is to be seen as the conjunction
of updates in Active (S, P) provided these updates are compatible. Else,
P clashes on S.

Definition 2.9. An L-program P clashes on an L-state S if there exists two
active updates α(s1, . . . , sk) := u and α(t1, . . . , tk) := v in Active (S, P)
relative to the same dynamic symbol α such that s1S = t1S , . . . , skS = tkS
but uS and vS are not equal (as elements of the universe).

Remark 2.10. A priori, another case could also be considered as a clash. We
illustrate it for a parallel block of two programs P,Q and the update of a
dynamic constant symbol c. Suppose cS 6= uS and c := u is an active update
in Active (S, P). Then P wants to modify the value of cS . Suppose also that
there is no active update with left member c in Active (S, Q). Then Q does
not want to touch the value of cS . Thus, P and Q have incompatible actions:
P modifies the interpretation of c whereas Q does nothing about c. One

could consider this as a clash for the parallel program

∣
∣
∣
∣

P
Q

. Nevertheless,

this case is not considered to be a clash. A moment reflection shows that this
is a reasonable choice. Otherwise, a parallel block would always clash except
in case all programs P1, . . . , Pn do exactly the same actions... Which would
make parallel blocks useless.

2.7.2 Halt and Fail

Definition 2.11. Let L be an ASM vocabulary, S be an L-state and P an
L-program. By induction, we define the two notions: P halts (resp. fails) on
S.

14

• If P is Skip or an update then P neither halts nor fails on S.

• If P is Halt (resp. Fail) then P halts and does not fail (resp. fails
and does not halt) on S.

• if C then Q else R halts on S if and only if

{
either CS = True and Q halts on S
or CS = False and R halts on S

• if C then Q else R fails on S if and only if

{
either CS = True and Q fails on S
or CS = False and R fails on S .

• The parallel block of programs P1, . . . , Pn halts on S if and only if some
Pi halts on S and no Pj fails on U .

• The parallel block of programs P1, . . . , Pn. fails on S if and only if some
Pi fails on S.

2.7.3 Successor State

Definition 2.12. Let L be an ASM vocabulary and S be an L-state.
The successor state T = Succ(S, P) of state S relative to an L-program P
is defined if only if P does not clash nor fail nor halt on S.
In that case, the successor is inductively defined via the following clauses.

1. T = Succ(S, P) and S have the same base sets U1, . . . ,Un.

2. αT = αS for any static symbol α.

3a. Succ(S, Skip) = S (recall that Skip does nothing. . . .)

3b. Suppose P is an update program α(t1, . . . , tk) := u where α is a dy-
namic symbol with type si1 × · · · × sik → si and ~a = (t1S , . . . , tkS).
Then all dynamic symbols different from α have the same interpreta-
tion in S and T and, for every ~b ∈ Ui1 × · · · × Uik , we have αT (~b) =
{

αS(~b) if ~b 6= ~a

uS if ~b = ~a
.

15

3c. Suppose P is the conditional program if C then Q else R. Then

{
Succ(S, P) = Succ(S, Q) if CS = True

Succ(S, P) = Succ(S, R) if CS = False

(since P does not fail on S, we know that CS is a Boolean).

3d Suppose P is the parallel block program

∣
∣
∣
∣
∣
∣
∣

P1
...
Pn

and P does not clash

on S. Then T = Succ(S, P) is such that, for every dynamic symbol
α with type si1 × · · · × sik → si and every tuple ~a = (a1, . . . , ak) in
Ui1 × · · · × Uik ,

• if there exists an update α(t1, . . . , tk) := u in Active (S, P)
such that ~a = (t1S , . . . , tkS) then α(~a)T is the common value of
all vS for which there exists some update α(s1, . . . , sk) := v in
Active (S, P) such that ~a = (s1S , . . . , skS).

• Else α(~a)T = α(~a)S .

Remark 2.13. In particular, αT (~a) and αS(~a) have the same value in case ~a =
(a1, . . . , ak) is not the value in S of any k-tuple of ground terms (t1, . . . , tk)
such that Active (S, P) contains an update of the form α(t1, . . . , tk) := u
for some ground term u.

2.8 Definition of ASMs and ASM Runs

At last, we can give the definition of ASMs and ASM runs.

Definition 2.14. 1. An ASM is a triple (L, P, (ξ,J)) (with two morpholog-
ical components and one semantico-morphological component) such that:

• L is an ASM vocabulary as in Definition 2.2,

• P is an L-program as in Definition 2.7,

• ξ is an L-initialization map and J is a ξ-initial L-state as in Definition
2.5.

16

An ASM has type 0 if all its dynamic symbols have arity 0 (i.e., they are
constants).

2. The run of an ASM (L, P, (ξ,J)) is the sequence of states (Si)i∈I indexed
by a finite or infinite initial segment I of N which is uniquely defined by the
following conditions:

• S0 is J .

• i + 1 ∈ I if and only if P does not clash nor fail nor halt on Si and
Active (Si, P) 6= ∅ (i.e. there is an active update3).

• If i+ 1 ∈ I then Si+1 = Succ(Si, P).

3. Suppose I is finite and i is the maximum element of I.
The run is successful if Active (Si, P) is empty or P halts on Si. In that
case the outputs are the interpretations on Si of the output symbols.
The run fails if P clashes or fails on Si. In that case the run has no output.

Remark 2.15. In case Active (Si, P) 6= ∅ and P does not clash nor fail nor
halt on Si and Si = Si+1 (i.e., if the active updates do not modify Si) then
the run is infinite: Sj = Si for every j > i.

2.9 Operational Completeness: the ASM Theorem

Let us now state the fundamental theorem of ASMs.

Theorem 2.16 (ASM Theorem, 1999 [16, 17], cf. [10]). Every process sat-
isfying the Sequential Postulates (cf. §2.2) can be emulated by an ASM with
the same vocabulary, sets of states and initial states.

In other words, using Gurevich Sequential Thesis 2.2, every sequential
algorithm can be step by step emulated by an ASM with the same values
of all environment parameters. I.e., ASMs are operationally complete as
concerns sequential algorithms.

The proof of the ASM Theorem also shows that ASM programs of a
remarkably simple form are sufficient.

3Nevertheless, it is possible that Si and Succ(Si, P) coincide, cf. Remark 2.15.

17

Definition 2.17. Let L be an ASM vocabulary. Two ASM L-programs P,Q
are equivalent if, for every L-initialization map ξ and every ξ-initial state J ,
the two ASMs (L, P, (ξ,J)) and (L, Q, (ξ,J)) have exactly the same runs.

Theorem 2.18 (Gurevich, 1999 [16]). Every ASM program is equivalent to
a program which is a parallel block of conditional blocks of updates, halt or
fail instructions, namely a program of the form:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

if C1 then

∣
∣
∣
∣
∣
∣
∣

I1,1
...
I1,p1

...

if Cn then

∣
∣
∣
∣
∣
∣
∣

In,1
...
In,pn

where the Ii,j’s are updates or Halt or Fail and the interpretations of C1,. . . ,
Cn in any state are Booleans such that at most one of them is True.

Proof. For Skip, Halt, Fail consider an empty parallel block. For an update
or Halt or Fail consider a block of one conditional with a tautological con-
dition. Simple Boolean conjunctions allow to transform a conditional of two
programs of the wanted form into the wanted form. The same for parallel
blocks of such programs.

3 Lambda Calculus

As much as possible, our notations are taken from Barendregt’s book [3]
(which is a standard reference on Λ-calculus).

3.1 Lambda Terms

Recall that the family Λ of λ-terms of the Λ-calculus is constructed from an
infinite family of variables via the following rules:

1. Any variable is a λ-term.

2. (Abstraction) If x is a variable and M is a λ-term then λx . M is a
λ-term.

18

Decorated rules of reduction in Λ-calculus

(Id) M →0 M (λx.M) N →1 M [N/x] (β)

(App)
M →i M

′

MN →i M
′N

N →i N
′

MN →i MN ′

M →i M
′

(λx.M) →i λx.M
′

(Abs)

Figure 2: Reductions with decorations

3. (Application) If M,N are λ-terms then (M N) is a λ-term.

Free and bound occurrences of a variable in a λ-term are defined as in
logical formulas, considering that abstraction λx . M bounds x in M .

One considers λ-terms up to a renaming (called α-conversion) of their
bound variables. In particular, one can always suppose that, within a λ-
term, no variable has both free occurrences and bound occurrences and that
any two abstractions involve distinct variables.

To simplify notations, it is usual to remove parentheses in terms, accord-
ing to the following conventions:

• applications associate leftwards: in place of (· · · ((N1 N2) N3) · · · Nk)
we write N1N2N3 · · ·Nk,

• abstractions associate rightwards: λx1 . (λx2 . (· · · . (λxk.M) · · ·)) is
written λx1 · · ·xk . M .

3.2 β-Reduction

Note 3.1. Symbols := are used for updates in ASMs and are also commonly
used in Λ-calculus to denote byM [x := N] the substitution of all occurrences
of a variable x in a term M by a term N . To avoid any confusion, we shall
rather denote such a substitution by M [N/x].

The family of λ-terms is endowed with a reducibility relation, called β-
reduction and denoted by →.

Definition 3.2. 1. Let P be a λ-term. A subterm of P the form (λx.M)N
is called a β-redex (or simply redex) of P . Going from P to the λ-term

19

Q obtained by substituting in P this redex by M [N/x] (i.e., substituting N
to every free occurrence of x in M) is called a β-reduction and we write
P → Q .

2. The iterations →i of → and the reflexive and transitive closure ։ are
defined as follows:

→0 = {(M,M) | M}
→i+1 = →i ◦ → (so that → = →1)

= {(M0,Mi) | ∃M1, . . . ,Mi |M0 →M1 → · · · →Mi → Mi+1}
։ =

⋃

i∈N →i

These reduction relations are conveniently expressed via axioms and rules (cf.
Figure 1): the schema of axioms (β) gives the core transformation whereas
rules (App) and (Abs) insure that this can be done for subterms.

Relations →i are of particular interest to analyse the complexity of the
simulation of one ASM step in Λ-calculus. Observe that axioms and rules
for → extend to ։.

3.3 Normal Forms

Definition 3.3. 1. A λ-term M is in normal form if it contains no redex.

2. A λ-term M has a normal form if there exists some term N in normal
form such that M ։ N .

Remark 3.4. There are terms with no normal form. The classical example is
Ω = ∆∆ where ∆ = λx . xx. Indeed, Ω is a redex and reduces to itself.

In a λ-term, there can be several subterms which are redexes, so that
iterating → reductions is a highly non deterministic process. Nevertheless,
going to normal form is a functional process.

Theorem 3.5 (Church-Rosser [7], 1936). The relation ։ is confluent: if
M ։ N ′ and M ։ N ′′ then there exists P such that N ′

։ P and N ′′
։ P .

In particular, there exists at most one term N in normal form such that
M ։ N .

Remark 3.6. Theorem 3.5 deals with ։ exclusively: relation →i is not con-
fluent for any i ≥ 1.

20

A second fundamental property is that going to normal form can be made
a deterministic process.

Definition 3.7. Let R′, R′′ be two occurrences of redexes in a term P . We
say that R′ is left to R′′ if the first lambda in R′ is left to the first lambda
in R′′ (all this viewed in P). If terms are seen as labelled ordered trees, this
means that the top lambda in R′ is smaller than that in R′′ relative to the
prefix ordering on nodes of the tree P .

Theorem 3.8 (Curry & Feys [9], 1958). Reducing the leftmost redex of terms
not in normal form is a deterministic strategy which leads to the normal form
if there is some.
In other words, if M has a normal form N then the sequence M = M0 →
M1 → M2 → · · · where each reduction Mi →Mi+1 reduces the leftmost redex
in Mi (if Mi is not in normal form) is necessarily finite and ends with N .

3.4 Lists in Λ-Calculus

We recall the usual representation of lists in Λ-calculus with special attention
to decoration (i.e., the number of β-reductions in sequences of reductions).

Proposition 3.9. Let 〈u1, . . . , uk〉 = λz . zu1 . . . uk and, for i = 1, . . . , k, let
πk
i = λx1 . . . xk . xi. Then 〈u1, . . . , uk〉 π

k
i →1+k ui.

Moreover, if all ui’s are in normal form then so is 〈u1, . . . , uk〉 and these
reductions are deterministic: there exists a unique sequence of reductions
from 〈u1, . . . , uk〉 to ui.

3.5 Booleans in Λ-Calculus

We recall the usual representation of Booleans in Λ-calculus.

Proposition 3.10. Boolean elements True, False and usual Boolean func-
tions can be represented by the following λ-terms, all in normal form:

pTrueq = λxy.x
pFalseq = λxy.y

neg = λx . xpFalseq pTrueq

and = λxy . xypFalseq
or = λxy . x pTrueq y

implies = λxy . xypTrueq
iff = λxy . xy(p¬qy)

For a, b ∈ {True, False}, we have neg paq → p¬aq, and paq pbq ։ pafbq,. . . .

21

Proposition 3.11 (If Then Else). For all terms M,N ,

(λz . zMN) pTrueq →2 M , (λz . zMN) pFalseq →2 N .

We shall use the following version of iterated conditional.

Proposition 3.12. For every n ≥ 1 there exists a term Casen such that, for
all normal terms M1, . . . ,Mn and all t1, . . . , tn ∈ {pTrueq, pFalseq},

Casen M1 . . .Mn t1 . . . tn →3n Mi

relative to leftmost reduction in case ti = pTrueq and ∀j < i tj = pFalseq.

Proof. Let ui = yi(λxi+1 . I) . . . (λxn . I), set

Casen = λy1 . . . ynz1 . . . zn . z1u1(z2u2(. . . (zn−1un−1(znunI)) . . .))

and observe that, for leftmost reduction, letting M ′
i = ui[Mi/yi],

Casen M1 . . .Mn t1 . . . tn →2n t1M
′

1(t2M
′

2(. . . (tn−1M
′

n−1(tnM
′

nI)) . . .))

→i M ′

i

→n−i Mi .

3.6 Integers in Λ-Calculus

There are several common representations of integers in Λ-calculus. We shall
consider a slight variant of the standard one (we choose another term for
p0q), again with special attention to decoration.

Proposition 3.13. Let

p0q = λz . zpTrueqpFalseq
pn+ 1q = 〈pFalseq, pnq〉 = λz . zpFalseqpnq

Zero = λx . xpTrueq
Succ = λz . 〈pFalseq, z〉
Pred = λz . xpFalseq

The above terms are all in normal form and

Zerop0q →3 pTrueq

Zeropn+ 1q →3 pFalseq
,

Succpnq →3 pn + 1q
Predpn + 1q →3 pnq

Predp0q →3 pFalseq

.

Moreover, all these reductions are deterministic.

22

Remark 3.14. The standard definition sets p0q = λx . x. Observe that
Zero(λx . x) →2 pTrueq. The chosen variant of p0q is to get the same deco-
ration (namely 3) to go from Zerop0q to pTrueq and to go from Zeropn+ 1q
to pFalseq.

Let us recall Kleene’s fundamental result.

Theorem 3.15 (Kleene, 1936). For every partial computable function f :
N

k → N there exists a λ-term M such that, for every tuple (n1, · · · , nk),

• Mpn1q · · · pnkq admits a normal form (i.e., is ։ reducible to a term
in normal form) if and only if (n1, · · · , nk) is in the domain of f ,

• in that case, Mpn1q · · · pnkq ։ pf(n1, · · · , nk)q (and, by Theorem 3.5,
this normal form is unique).

3.7 Datatypes in Λ-Calculus

We just recalled some representations of Booleans and integers in Λ-calculus.
In fact, any inductive datatype can also be represented. Using computable
quotienting, this allows to also represent any datatype used in algorithms.
Though we will not extend on this topic, let us recall Scott encoding of
inductive datatypes in the Λ-calculus (cf. Mogensen [23]).

1. If the inductive datatype has constructors ψ1, . . . , ψp having
arities k1, . . . , kp, constructor ψi is represented by the term

λx1 . . . xkiα1 . . . αp . αix1 . . . xki .

In particular, if ψi is a generator (i.e., an arity 0 constructor)
then it is represented by the projection term λα1 . . . αp . αi.
2. An element of the inductive datatype is a composition of the
constructors and is represented by the similar composition of the
associated λ-terms.

Extending the notations used for Booleans and integers, we shall also denote
by paq the λ-term representing an element a of a datatype.

Scott’s representation of inductive datatypes extends to finite families of
datatypes defined via mutual inductive definitions. It suffices to endow con-
structors with types and to restrict compositions in point 2 above to those
respecting constructor types.

23

3.8 Lambda Calculus with Benign Constants

We consider an extension of the lambda calculus with constants to represent
particular computable functions and predicates. Contrary to many λδ-calculi
(Church λδ-calculus, 1941 [8], Statman, 2000 [26], Ronchi Della Rocca, 2004
[25], Barendregt & Statman, 2005 [4]), this adds no real additional power:
it essentially allows for shortcuts in sequences of reductions. The reason is
that axioms in Definition 3.16 do not apply to all terms but only to codes of
elements in datatypes.

Definition 3.16. Let F be a family of functions with any arities over some
datatypes A1, . . . , An. The ΛF-calculus is defined as follows:

• The family of λF-terms is constructed as in §3.1 from the family of
variables augmented with constant symbols: one constant cf for each
f ∈ F.

• The axioms and rules of the top table of Figure 2 are augmented with
the following axioms: if f : Ai1 × · · · × Aik → Ai is in F then, for all
(a1, · · · , ak) ∈ Ai1 × · · · ×Aik ,

(Axf) cf pa1q · · · pakq → pf(a1, · · · , ak)q .

Definition 3.17. 1. We denote by →β the classical β-reduction (with the
contextual rules (Abs), (App)) extended to terms of ΛF.
2. We denote by →F the reduction given by the sole (Axf)-axioms and the
contextual rules (Abs), (App).
3. We use double decorations: M →i,j N means that there is a sequence
consisting of i β-reductions and j F-reductions which goes from t to u.

The Church-Rosser property still holds.

Proposition 3.18. The ΛF-calculus is confluent (cf. Theorem 3.5).

Proof. Theorem 3.5 insures that ։β is confluent. It is immediate to see
that any two applications of the F axioms can be permuted: this is because
two distinct F-redexes in a term are always disjoint subterms. Hence →F is
confluent. Observe that ։ is obtained by iterating finitely many times the
relation ։β ∪ →F. Using Hindley-Rosen Lemma (cf. Barendregt’s book [3],
Proposition 3.3.5, or Hankin’s book [19], Lemma 3.27), to prove that ։ is

24

confluent, it suffices to prove that ։β and →F commute. One easily reduces
to prove that →β and →F commute, i.e.,

∃P (M →β P →F N) ⇐⇒ ∃Q (M →F Q →β N) .

Any length two such sequence of reductions involves two redexes in the term
M : a β-redex R = (λx . A)B and a F-redex C = c pa1q · · · pakq. There are
three cases: either R and C are disjoint subterms of M or C is a subterm of
A or C is a subterm of B. Each of these cases is straightforward.

We adapt the notion of leftmost reduction in the ΛF-calculus as follows.

Definition 3.19. The leftmost reduction in ΛF reduces the leftmost F-redex
if there is some else it reduces the leftmost β-redex.

3.9 Good F-Terms

To functions which can be obtained by composition from functions in F we
associate canonical terms in ΛF and datatypes. These canonical terms are
called good F-terms, they contain no abstraction, only constant symbols cf ,
with f ∈ F, and variables.

Problem 3.20. We face a small problem. Functions in F are to represent static
functions of an ASM. Such functions are typed whereas ΛF is an untyped
lambda calculus. In order to respect types when dealing with composition of
functions in F, the definition of good F-terms is done in two steps: the first
step involves typed variables and the second one replaces them by untyped
variables.

Definition 3.21. 1. Let A1, . . . , An be the datatypes involved in functions of
the family F. Consider typed variables xAi

j where j ∈ N and i = 1, . . . , n. The
family of pattern F-terms, their types and semantics are defined as follows:
Let f ∈ F be such that f : Ai1 × · · · × Aik → Aq.

• If x
Ai1
j1
, . . . , x

Aik

jk
are typed variables then the term cf x

Ai1
j1

. . . x
Aik

jk
is a

pattern F-term with type Ai1×· · ·×Aik → Aq and semantics [[cf x
Ai1
j1

. . . x
Aik

jk
]] =

f .

• For j = 1, . . . , k, let tj be a pattern F-term with datatype Aj or a typed

variable x
Aj

i . Suppose the term t = cf t1 · · · tk contains exactly the typed

25

g

g

xzz

xh

y

Figure 3: Composition tree

variables xAi

j for (i, j) ∈ I and, for ℓ = 1, . . . , k, the term tℓ contains

exactly the typed variables xAi

j for (i, j) ∈ Ij ⊆ I.
Then the term cf t1 · · · tk is a pattern F-term with type

∏

i∈I Ai →
Aq and a semantics [[cf t1 · · · tk]] such that, for every tuple (ai)i∈I ∈
∏

i∈I Ai,

[[t]]((ai)i∈I) = f([[t1]]((ai)i∈I1)), . . . , [[tk]]((ak)i∈Ik))) .

2. Good F-terms are obtained by substituting in a pattern F-term untyped
variables to the typed variables so that two distinct typed variables are sub-
stituted by two distinct untyped variables.

The semantics of good F-terms is best illustrated by the following exam-
ple: the function h associated to the term cg(chy)x(cgzzx) is the one given
by equality f(x, y, z) = g(h(y), x, g(z, z, x)) which corresponds to Figure 3.9.

The reason for the above definition is the following simple result about re-
ductions of good terms obtained via substitutions. It is proved via a straight-
forward induction on good F-terms and will be used in §4.3, 4.4

Proposition 3.22. Let t be a good F-term with k variables y1, . . . , yk such
that [[t]] = f : Ai1 × · · ·×Aik → Aq. Let N be the number of nodes of the tree
associated to the composition of functions in F giving f (cf. Figure 3.9).
There exists Lt = O(N) such that, for every (a1, . . . , ak) ∈ Ai1 × · · · × Aik ,

t[pa1q/y1, . . . , pakq/yk] ։F pf(a1, . . . , ak)q

and, using the leftmost reduction strategy, this sequence of reductions consists
of exactly Lt F-reductions.

26

4 Variations on Curry’s Fixed Point

4.1 Curry’s Fixed Point

Let us recall Curry’s fixed point.

Definition 4.1. The Curry operator ϕ 7→ θϕ on λ-terms is defined as follows

θF = (λx . F (xx))(λx . F (xx)) .

Theorem 4.2 (Curry’s fixed point). For every λ-term F , θF → FθF .

Proof. One β-reduction suffices: θF is of the form XX and is itself a redex
(since X is an abstraction) which β-reduces to F (XX), i.e., to FθF .

4.2 Padding Reductions

We show how to pad leftmost reduction sequences so as to get prescribed
numbers of β and F-reductions.

Lemma 4.3 (Padding lemma). Suppose that F contains some function ω :
B1 × · · · × Bℓ → Bi (with 1 ≤ i ≤ ℓ) and some constants ν1 ∈ B1, . . . ,
νℓ ∈ Bℓ.
1. For every K ≥ 2 and L ≥ 0, there exists a λ-term padK,L in ΛF with
length O(K + L) such that, for any finite sequence of λ-terms θ, t1, . . . , tk in
ΛF which contain no F-redex,

i. padK,L θ t1 · · · tk ։ θ t1 · · · tk.

ii. The leftmost derivation consists of exactly L F-reductions followed by
K β-reductions.

2. Moreover, if K ≥ 3, one can also suppose that padK,L contains no F-redex.

Proof. 1. For the sake of simplicity, we suppose that ω has arity 1, the general
case being a straightforward extension. Let I = λx . x and Iℓ = I · · · I (ℓ
times I). Observe that Iℓ s0 · · · sp ։ s0 · · · sp and the leftmost derivation
consists of exactly ℓ β-reductions. So it suffices to set padK,0 = IK and, for
L ≥ 1,

padK,L = IK−2 (λxy . y) (

L times
︷ ︸︸ ︷

pωq(. . . (pωq pν1q) . . .)) .

27

2. To suppress the F-redex pωqpν1q, modify padK,L as follows:

padK,L = IK−3 (λxy . xy) ((λz . (

L times
︷ ︸︸ ︷

pωq(. . . (pωq z) . . .))) pν1q) .

4.3 Constant Cost Updates

We use Curry’s fixed point Theorem and the above padding technique to
insure constant length reductions for any given update function for tuples.

Lemma 4.4. Let A1, . . . , An be the datatypes involved in functions of the
family F. Suppose that F contains some function ω : B1×· · ·×Bℓ → Bi (with
1 ≤ i ≤ ℓ) and some constants ν1 ∈ B1, . . . , νℓ ∈ Bℓ. Let τ : {1, . . . , k} →
{1, . . . , n} be a distribution of indexes of sorts. For j = 1, . . . , k, let ϕj be a
good F-term with variables xi for i ∈ Ij ⊆ {1, . . . , k} such that [[ϕj]] = fj :
∏

i∈Ij
Aτ(i) → Aτ(j).

There exists constants Kmin and Lmin such that, for all K ≥ Kmin and L ≥
Lmin, there exists a λ-term θ such that,

1. Using the leftmost reduction strategy, for all (a1, . . . , ak) ∈ Aτ(i)×· · ·×
Aτ(k), denoting by ~aI the tuple (aj)j∈I,

θ pa1q · · · pakq ։ θ pf1(~aI1)q · · ·pfk(~aIk)q . (1)

2. This sequence of reductions consists of K β-reductions and L F-reductions.

Proof. Let K ′, L′ be integers to be fixed later on. Set

F = padK ′,L′ λαx1 . . . xk . αϕ1 . . . ϕk θ = (λz . F (zz)) (λz . F (zz)) .

Since θ and the ϕi’s have no F-redex, we have the following leftmost reduc-
tion:

θ pa1q · · · pakq →1,0 F θ pa1q · · · pakq (cf. Theorem 4.2)
= padK ′,L′ (λαx1 . . . xk . αϕ1 . . . ϕk) θ pa1q · · · pakq
→K ′,L′ (λαx1 . . . xk . αϕ1 . . . ϕk) θ pa1q · · · pakq

(apply Lemma 4.3)
→k+1,0 θ ϕ1[pa1q/x1, . . . , pakq/xk]

· · ·ϕk[pa1q/x1, . . . , pakq/xk]
→0,S θ pf1(~aI1)q · · · pfk(~aIk)q

(apply Proposition 3.22)

28

where S =
∑

j=1,...,k Lϕj
. The total cost is K ′+k+2 β-reductions plus L′+S

F-reductions. We conclude by setting K ′ = K − (k+2) and L′ = L−S.

4.4 Constant Cost Conditional Updates

We refine Lemma 4.4 to conditional updates.

Lemma 4.5. Let A1, . . . , An be the datatypes involved in functions of the
family F. Suppose that F contains some function ω : B1 × · · · × Bℓ → Bi

(with 1 ≤ i ≤ ℓ) and some constants ν1 ∈ B1, . . . , νℓ ∈ Bℓ. Let τ :
{1, . . . , k} → {1, . . . , n}, ι1, . . . , ιq ∈ {1, . . . , n} be distributions of indexes of
sorts. Let (ρs)s=1,...,p+q, (ϕi,j)i=1,...,p,j=1,...,k, (γℓ)i=1,...,q be sequences of good
F-terms with variables xi with i varying in the respective sets Is, Ii,j, Jℓ ⊆
{1, . . . , k}. Suppose that

[[ρs]] = rs :
∏

i∈Is
Aτ(i) → Bool ,

[[ϕi,j]] = fi,j :
∏

i∈Ii,j
Aτ(i) → Aτ(j) ,

[[γℓ]] = gℓ :
∏

i∈Jℓ
Aτ(i) → Aι(ℓ)

(in particular, f1,j, . . . , fp,j all take values in Aτ(j)). There exists constants
Kmin and Lmin such that, for all K ≥ Kmin and L ≥ Lmin, there exists a
λ-term θ such that,

1. Using the leftmost reduction strategy, for all (a1, . . . , ak) ∈ Aτ(1)×· · ·×Aτ(k)

and s ∈ {1, . . . , p, p+ 1, . . . , p+ q},

If rs(~aIs) = True ∧ ∀t < s rt(~aIt) = False (†)s

then θ pa1q · · ·pakq ։

{
θ pfs,1(~aIs,1)q · · · pfs,k(~aIs,k)q if s ≤ p
pgℓ(~aJℓ)q if s = p+ ℓ

.

2. In all cases, this sequence of reductions consists of exactly K β-reductions
and L F-reductions.

Proof. Let K ′, L′ be integers to be fixed at the end of the proof. For i =
1, . . . , p and ℓ = 1, . . . , q, let

Mi = αϕi,1 · · ·ϕi,k Mp+ℓ = γℓ .

29

Using the Casen term from Proposition 3.12, set

H = Casep+qM1 . . .MpMp+1 . . .Mp+q

G = λαx1 . . . xk . (H ρ1(x1 . . . xk) . . . ρp+q(x1 . . . xk))

F = padK ′,L′ G

θ = (λz . F (zz)) (λz . F (zz))

The following sequence of reductions is leftmost because, as long as padK ′,L′

is not completely reduced, there is no F-redex on its right.

(R1)
θ pa1q · · ·pakq →1,0 F θ pa1q · · · pakq (cf. Theorem 4.2)

= padK ′,L′ G θ pa1q · · · pakq
→K ′,L′ G θ pa1q · · · pakq

Let us denote by Aσ the term Aσ
i = A[θ/α, pa1q/x,1 , . . . , pakq/xk]. The

leftmost reduction sequence goes on with β-reductions as follows:

(R2)
G θ pa1q · · ·pakq = (λαx1 . . . xk . (H ρ1 . . . ρp+q)) θ pa1q · · · pakq

→k+1,0 Hσ ρσ1 . . . ρ
σ
p+q

Now, using Proposition 3.22, the following leftmost reductions are F-reductions:

ϕσ
i,j →0,Lϕi,j

pfi,j(~aIi,j)q

Mσ
i →0,

∑j=k
j=1 Lϕi,j

θ pfi,1(~aIi,1)q . . . pfi,k(~aIi,k)q

Mσ
p+ℓ = γσp+ℓ →0,Lγℓ

pgℓ(~aJℓ)q

ρσs →0,Lρs
prs(~aIs)q

Going with our main leftmost reduction sequence, letting

N = (

i=p
∑

i=1

j=k
∑

j=1

Lϕi,j
) +

ℓ=q
∑

ℓ=1

Lγℓ +

s=p+q
∑

s=1

Lρs

and s be as in condition (†)s in the statement of the Lemma, we get

(R3)

Hσ ρσ1 . . . ρ
σ
p+q = Casep+qM

σ
1 . . .M

σ
pM

σ
p+1 . . .M

σ
p+q ρ

σ
1 . . . ρ

σ
p+q

→0,N Casep+q

(θ pf1,1(~aI1,1)q . . . pf1,k(~aI1,k)q)
. . .
(θ pfp,1(~aIp,1)q . . . pfp,k(~aIp,k)q)
(pg1(~aJ1)q) . . . (pgq(~aJq)q)
ρσ1 . . . ρσp+q

→3(p+q),0

{
θ pfs,1(~aIs,1)q . . . pfs,k(~aIs,k)q if s ≤ p
pgℓ(~aJℓ)q) if s = p+ ℓ

30

Summing up reductions (R1), (R2), (R3), we see that

θ pa1q · · · pakq →η,ζ

{
θ pfs,1(~aIs,1)q . . . pfs,k(~aIs,k)q if s ≤ p
pgℓ(~aJℓ)q) if s = p+ ℓ

where η = 1 +K ′ + (k + 1) + 3(p+ q) and ζ = L′ +N .
To conclude, set Kmin = k + 5 + 3(p + q) and Lmin = N . If K ≥ Kmin and
L ≥ Lmin it suffices to set K ′ = K − (Kmin − 3) and L′ = L − Lmin and to
observe that K ′ ≥ 3 as needed in Lemma 4.3.

5 ASMs and Lambda Calculus

All along this section, S = (L, P, (ξ,J)) is some fixed ASM (cf. Definition
2.14).

5.1 Datatypes and ASM Base Sets

The definition of ASM does not put any constraint on the base sets of the
multialgebra. However, only elements which can be named are of any use,
i.e. elements which are in the range of compositions of (static or dynamic)
functions on the ASM at the successive steps of the run.
The following straightforward result formalizes this observation.

Proposition 5.1. Let (L, P, (ξ,J)) be an ASM. Let U1, . . . ,Un be the base

sets interpreting the different sorts of this ASM. For t ∈ N, let A
(t)
1 ⊆ U1,. . . ,

A
(t)
n ⊆ Un be the sets of values of all ground good F-terms (i.e. with no

variable) in the t-th successor state St of the initial state J of the ASM.

1. For any t ∈ N, A
(t)
1 ⊇ A

(t+1)
1 , . . . , A

(t)
n ⊇ A

(t+1)
n .

2. (A
(t)
1 , . . . , A

(t)
n) is a submultialgebra of St, i.e. it is closed under all static

and dynamic functions of the state St.

Thus, the program really works only on the elements of the sets (A
(0)
1 , . . . , A

(0)
n)

of the initial state which are datatypes defined via mutual inductive defini-
tions using ξ and J .

31

5.2 Tailoring Lambda Calculus for an ASM

Let F be the family of interpretations of all static symbols in the initial state.
The adequate Lambda calculus to encode the ASM is ΛF.
Let us argue that this is not an unfair trick. An algorithm does decompose
a task in elementary ones. But “elementary” does not mean “trivial” nor
“atomic”, it just means that we do not detail how they are performed: they
are like oracles. There is no absolute notion of elementary task. It depends on
what big task is under investigation. For an algorithm about matrix product,
multiplication of integers can be seen as elementary. Thus, algorithms go
with oracles.
Exactly the same assumption is done with ASMs: static and input functions
are used for free.

5.3 Main Theorem for Type 0 ASMs

We first consider the case of type 0 ASMs.

Theorem 5.2. Let (L, P, (ξ,J)) be an ASM with base sets U1, . . . ,Un. Let

A1,. . . , An be the datatypes A
(0)
1 ,. . . , A

(0)
n (cf. Proposition 5.1). Let F be

the family of interpretations of all static symbols of the ASM restricted to
the datatypes A1,. . . , An. Suppose all dynamic symbols have arity 0, i.e. all
are constants symbols. Suppose these dynamic symbols are η1, . . . , ηk. and
η1, . . . , ηℓ are the output symbols.
Let us denote by eti the value of the constant ηi in the t-th successor state St

of the initial state J .
There exists K0 such that, for every K ≥ K0, there exists a λ-term θ in ΛF

such that, for all initial values e01, . . . , e
0
k of the dynamic constants and for all

t ≥ 1,

θ pe01q . . . pe
0
kq →Kt θpet1q . . . pe

t
kq

if the run does not halt
nor fail nor clash
for steps ≤ t

θ pe01q . . . pe
0
kq →Ks 〈p1q, pes1q . . . pe

s
ℓq〉 if the run halts at step s ≤ t

θ pe01q . . . pe
0
kq →Ks p2q if the run fails at step s ≤ t

θ pe01q . . . pe
0
kq →Ks p3q if the run clashes at step s ≤ t

Thus, groups of K successive reductions simulate in a simple way the succes-
sive states of the ASM, and give the output in due time when it is defined.

32

Proof. Use Theorem 2.18 to normalize the program P . We stick to the no-
tations of that Theorem. Since there is no dynamic function, only dynamic
constants, the ASM terms Ci and Ii,j name the result of applying to the
dynamic constants a composition of the static functions (including static
constants). Thus, one can associate good F-terms ρi, ϕi,j to these composi-
tions.
Observe that one can decide if the program halts or fails or clashes via some
composition of functions in F (use the static equality function which has been
assumed, cf. Definition 2.14). So enter negative answers to these decisions in
the existing conditions C1, . . . , Cn. Also, add three more conditions to deal
with the positive answers to these decisions. These three last conditions are
associated to terms γ1, γ2, γ3. Finally, apply Lemma 4.5 (with p = n and
q = 3).

Remark 5.3. A simple count in the proof of Lemma 4.5 allows to bound K0

as follows: K0 = O((size of P)2).

5.4 Main Theorem for All ASMs

Let ψ be a dynamic symbol. Its initial interpretation ψS0 is given by a com-
position of the static objects (cf. Definition 2.5) hence it is available in each
successor state of the initial state. In subsequent states St, its interpretation
ψSt

is different but remains almost equal to ψS0 : the two differ only on
finitely many tuples. This is so because, at each step, any dynamic symbol is
modified on at most N tuples where N depends on the program. Let ∆ψ be
a list of all tuples on which ψS0 has been modified. What can be done with
ψ can also be done with ψS0 and ∆ψ. Since ψS0 is available in each successor
state of the initial state, we are going to encode ∆ψSt

rather than ψSt
. Now,

∆ψSt
is a list and we need to access in constant time any element of the list.

And we also need to manage the growth of the list.
This is not possible in constant time with the usual encodings of datatypes
in Lambda calculus. So the solution is to make ΛF bigger: put new constant
symbols to represent lists and allow new F-reduction axioms to get in one
step the needed information on lists.
Now, is this fair? We think it is as regards simulation of ASMs. In ASM
theory, one application of the program is done in one unit of time though it
involves a lot of things to do. In particular, one can get in one unit of time
all needed information about the values of static or dynamic functions on

33

the tuples named by the ASM program. What we propose to do with the
increase of ΛF is just to get more power, as ASMs do on their side.

Definition 5.4. Let A1, . . . , An be the datatypes involved in functions of F.
If ε = (i1, . . . , im, i) is an (m + 1)-tuple of elements in {1, . . . , n}, we let Lε

be the datatype of finite sequences of (m+ 1)-tuples in Ai1 × · · · ×Aim ×Ai.
Let E be a family of tuples of elements of {1, . . . , n}. The Lambda calculus
ΛE

F
is obtained by adding to ΛF families of symbols

(Fε, Bε, Vε,Addε,Delε)ε∈E

and the axioms associated to the following intuitions. For ε = (i1, . . . , im, i),

i. Symbol Fε is to represent the function Lε → Bool such that, for σ ∈ Lε,
Fε(σ) is True if and only if σ is functional in its first m components. In
other words, Fε checks if any two distinct sequences in σ always differ
on their first m components.

ii. Symbol Bε is to represent the function Lε × (Ai1 × · · · × Aim) → Bool

such that, for σ ∈ Lε and ~a ∈ Ai1 × · · · × Aim, Bε(σ,~a) is True if and
only if ~a is a prefix of some (m+ 1)-tuple in the finite sequence σ.

iii. Symbol Vε is to represent the function Lε× (Ai1 ×· · ·×Aim) → Ai such
that, for σ ∈ Lε and ~a ∈ Ai1 × · · · ×Aim,
- Vε(σ,~a) is defined if and only if Fε(σ) = True and Bε(σ,~a) = True,
- when defined, Vε(σ,~a) is the last component of the unique (m+1)-tuple
in the finite sequence σ which extends the m-tuple ~a.

iv. Symbol Addε is to represent the function Lε×(Ai1×· · ·×Aim×Ai) → Lε

such that, for σ ∈ Lε and ~a ∈ Ai1×· · ·×Aim×Ai, Addε(σ,~a) is obtained
by adding the tuple ~a as last element in the finite sequence σ.

v. Symbol Delε is to represent the function Lε×(Ai1×· · ·×Aim×Ai) → Lε

such that, for σ ∈ Lε and ~a ∈ Ai1×· · ·×Aim×Ai, Delε(σ,~a) is obtained
by deleting all occurrences of the tuple ~a in the finite sequence σ.

Now, we can extend Theorem 5.2.

Theorem 5.5. Let (L, P, (ξ,J)) be an ASM with base sets U1, . . . ,Un. Let

A1,. . . , An be the datatypes A
(0)
1 ,. . . , A

(0)
n (cf. Proposition 5.1). Let F be

the family of interpretations of all static symbols of the ASM restricted to

34

the datatypes A1,. . . , An. Let η1, . . . , ηk be the dynamic symbols of the ASM.
Suppose ηi has type Uτ(i,1) × · · · × Uτ(i,pi) → Uqi for i = 1, . . . , k.
Set E = {(τ(i, 1), . . . , τ(i, pi), qi) | i = 1, . . . , k}.
The conclusion of Theorem 5.2 is still valid in the Lambda calculus ΛE

F
with

the following modification:

eti is the list of pi+1-tuples describing the differences between the
interpretations of (ηi)S0

and (ηi)St
.

References

[1] Allan J. Atrubin. A One-Dimensional Real-Time Iterative Multiplier.
Trans. on Electronic Computers. EC-14(3):394-399 June 1965.

[2] Egon Börger and Robert Stärk. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer-Verlag, 2003.

[3] Henk P. Barendregt. The Lambda calculus. Its syntax and semantics.
North-Holland, 1984.

[4] Henk Barendregt and Richard Statman. Böhm’s Theorem, Church’s
Delta, Numeral Systems, and Ershov Morphisms. Processes, Terms and
Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem
Klop, on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science 3838:40–54, 2005.

[5] T. Biedl, J.F. Buss, E.D. Demaine, M.L. Demaine, M. Hajiaghayi and
T. Vinăi. Palindrome recognition using a multidimensional tape. Theo-
retical Computer Science, 302(1-3):475–480, 2003.

[6] Egon Börger. The Origins and the Development of the ASM Method for
High Level System Design and Analysis. Journal of Universal Computer
Science, 8(1):2–74, 2002.

[7] Alonzo Church and John B. Rosser. Some properties of conversion.
Trans. Amer. Math. Soc., 39:472–482, 1937.

[8] Alonzo Church. The Calculi of Lambda Conversion. Princeton Univer-
sity Press, 1941.

35

[9] Haskell Curry and R. Feys. Combinatory logic, vol I. North Holland,
1958.

[10] Nachum Dershowitz and Yuri Gurevich. A natural axiomatization of
computability and proof of Church’s Thesis. Bulletin. of Symbolic Logic,
14(3):299–350, 2008.

[11] Yuri Gurevich. Reconsidering Turing’s Thesis: towards more realistic
semantics of programs. Technical Report CRL-TR-38-84, EEC Depart-
ment, University of Michigan, 1984.

[12] Yuri Gurevich. A new Thesis. Abstracts, American Math. Soc., 1985.

[13] Yuri Gurevich. Evolving Algebras: An Introductory Tutorial. Bulletin
of the European Association for Theoretical Computer Science, 43: 264–
284, February 1991. Reprinted in Current Trends in Theoretical Com-
puter Science, 1993, 266–29, World Scientific, 1993.

[14] Yuri Gurevich. Evolving algebras 1993: Lipari guide. Specification and
Validation Methods. Oxford University Press. 9-36, 1995.

[15] Yuri Gurevich. May 1997 Draft of the ASM Guide. Tech Report CSE-
TR-336-97, EECS Dept, University of Michigan, 1997.

[16] Yuri Gurevich. The Sequential ASM Thesis. Bulletin of the European
Association for Theoretical Computer Science, 67: 93–124, February
1999. Reprinted in Current Trends in Theoretical Computer Science,
2001, 363–392, World Scientific, 2001.

[17] Yuri Gurevich. Sequential Abstract State Machines capture Sequential
Algorithms. ACM Transactions on Computational Logic, 1(1):77–111,
July 2000.

[18] F.C. Hennie. One-tape off-line Turing machine complexity. Information
and Computation, 8:553–578, 1965.

[19] Chris Hankin. Lambda calculi. A guide for computer scientists. Graduate
Texts in Computer, Oxford University Press, 1994.

[20] Andrei N. Kolmogorov. On the definition of algorithm. Uspekhi Mat.
Nauk, 13(4):3–28, 1958. Translations Amer. Math. Soc., 29:217–245,
1963.

36

[21] Donald Knuth. The Art of Computer Programming (vol. 2. 3rd edition,
Addison-Wesley, 1998.

[22] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher
Order and Symbolic Computation, 20:199–207, 2007.

[23] Torben Æ. Mogensen. Efficient Self-Interpretation in Lambda Calculus.
J. of Functional Programming, 2(3): 345-363, 1992.

[24] Wolfgang Paul. Kolmogorov complexity and lower bounds. Second Int.
Conf. on Fundamentals of Computation Theory. L. Budach editor,
Akademie Berlin. 325–334, 1979.

[25] Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda-
calculus. A Metamodel for Computation. Springer-Verlag 2004, XIII,
252 p.

[26] Richard Statman. Church’s Lambda Delta Calculus. LPAR 2000. Lec-
ture Notes in Computer Science 1955:293–307, 2000.

37

	1 Introduction
	1.1 Operational versus Denotational Completeness
	1.2 Lambda Calculus and Operational Completeness
	1.3 Road Map

	2 ASMs
	2.1 The Why and How of ASMs on a Simple Example
	2.2 Gurevich Sequential Thesis
	2.3 The ASM Modelization Approach
	2.4 Vocabulary and States of an ASM
	2.5 Initialization Maps
	2.6 ASM Programs
	2.7 Action of an L-Program on an L-State
	2.7.1 Active Updates and Clashes
	2.7.2 Halt and Fail
	2.7.3 Successor State

	2.8 Definition of ASMs and ASM Runs
	2.9 Operational Completeness: the ASM Theorem

	3 Lambda Calculus
	3.1 Lambda Terms
	3.2 -Reduction
	3.3 Normal Forms
	3.4 Lists in -Calculus
	3.5 Booleans in -Calculus
	3.6 Integers in -Calculus
	3.7 Datatypes in -Calculus
	3.8 Lambda Calculus with Benign Constants
	3.9 Good F-Terms

	4 Variations on Curry's Fixed Point
	4.1 Curry's Fixed Point
	4.2 Padding Reductions
	4.3 Constant Cost Updates
	4.4 Constant Cost Conditional Updates

	5 ASMs and Lambda Calculus
	5.1 Datatypes and ASM Base Sets
	5.2 Tailoring Lambda Calculus for an ASM
	5.3 Main Theorem for Type 0 ASMs
	5.4 Main Theorem for All ASMs

