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Abstract 25 

The advent of Fastloc-GPS is helping to transform marine animal tracking by allowing the 26 

collection of high-quality location data for species that surface only briefly. We show how the 27 

improved location accuracy of Fastloc-GPS compared to Argos tracking is expected to lead to far 28 

more accurate home range estimates, particularly for animals moving over the scale of a few km. 29 

We reach this conclusion using simulated data and home range estimates derived from empirical 30 

tracking data for green sea turtles (Chelonia mydas) equipped with Argos linked Fastloc-GPS 31 

tags at three different foraging areas (western Indian Ocean, Western Australia and Caribbean). 32 

Poor quality Argos locations (e.g., location classes A, B) produced home range estimates ranging 33 

from 10 to 100 times larger than those derived from Fastloc-GPS data, whereas high-quality 34 

Argos locations (location classes 1-3) produced home range estimates that were generally 35 

comparable to those derived from Fastloc-GPS data. However, the limited number of Argos class 36 

1-3 locations obtained for all three turtles – an average of 14.6 times more Fastloc-GPS locations 37 

were obtained compared to Argos class 1-3 locations – resulted in blurred patterns of space use. 38 

In contrast, the high volume of Fastloc-GPS locations revealed fine-scale movements in striking 39 

detail (i.e., use of discrete patches separated by just a few hundred m). We recommend careful 40 

consideration of the effects of location accuracy and data volume when developing sampling 41 

regimes for marine tracking studies and make recommendations regarding how sampling can be 42 

standardized to facilitate meaningful spatial and temporal comparisons of space use.43 
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Introduction 44 

Understanding patterns of space use by animals lies at the heart of many ecological studies and 45 

also underpins many efforts to make evidenced-based management decisions, for example as 46 

part of conservation planning (Cooke 2008). Thanks to increased accessibility of tracking 47 

technology (Kays et al. 2015; Hays et al. 2016), both the number of taxa tracked and the number 48 

of studies collecting movement data across different habitats are rapidly increasing. However, 49 

the ability to reliably detect differences in space use among individuals, species and locations 50 

crucially depends on the sampling regime used including the accuracy and amount of location 51 

data obtained (Börger et al. 2006a, b; Frair et al. 2010; Hebblewhite and Haydon 2010; 52 

Montgomery et al. 2011; McClintock et al. 2015). While the importance of the quality and 53 

abundance of location data for studying animal movements has been well known for some time 54 

in certain fields, particularly terrestrial ecology (e.g., Harris et al. 1995), in other fields with a 55 

shorter tracking history the message is less well appreciated. As such, it is important to revisit 56 

some of the key messages in home range estimation to avoid methodological artefacts obscuring 57 

true differences in space use. 58 

 59 

In the marine context, a major advance in recent years has been the advent of Fastloc-GPS 60 

tracking (Kuhn et al. 2009; Hazen et al. 2012; Hoenner et al. 2012). Conventional GPS receivers 61 

need several seconds to generate a location estimate, which has precluded their use on marine 62 

species that only surface briefly. In contrast, Fastloc-GPS overcomes this problem with the rapid 63 

(typically tens of milliseconds) acquisition of GPS data when an animal surfaces and subsequent 64 

post-processing to derive position estimates. Fastloc-GPS has massively improved the accuracy 65 

of location data compared to traditional Argos tracking and is now widely used to track diverse 66 
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marine taxa including sea turtles (Hazel et al. 2009; Schofield et al. 2010a, b), marine mammals 67 

(Costa et al. 2010) and fish (Sims et al. 2009). Fastloc-GPS tags can be deployed as data-loggers, 68 

which store data for subsequent download when the unit is retrieved, or can be interfaced with an 69 

Argos tag (i.e. Argos linked Fastloc-GPS tags) so that data are received by the Fastloc-GPS 70 

receiver and then relayed via the Argos system. 71 

 72 

Here, we consider the implications of high resolution Fastloc-GPS tracking for home range 73 

estimation and fine-scale movement analysis in sea turtles. First, we use simulations to show the 74 

general importance of location accuracy for home range estimation. We then support these 75 

simulations with empirical data collected for green turtles (Chelonia mydas) tracked using Argos 76 

linked Fastloc-GPS tags, which allowed the utility of both the Argos and Fastloc-GPS data to be 77 

compared for the same individuals. Finally, we provide recommendations for how future work 78 

might proceed to identify fine-scale patterns of space use within and among individuals, species 79 

and study systems in the marine environment. 80 

 81 

Materials and Methods 82 

Simulations 83 

To evaluate the impact of location accuracy on home range estimation, we generated 84 

distributions of the location of simulated animals whose available habitat size varied by three 85 

orders of magnitude. For computational simplicity, we drew animal locations (N = 1000) from a 86 

bivariate normal distribution within square-shaped habitats of 1, 10, 100 and 1000 km2. We 87 

considered these to be the ‘true’ animal locations. We then used the package adehabitatHR 88 

(Calenge 2006) in R v. 3.3.2 (R Core Team 2016) to estimate the 95% home range of the animal 89 
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in each habitat size via the fixed kernel method (Worton 1989). We used the reference bandwidth 90 

(href) as a smoothing parameter, which is suitable for bivariate normal data (Calenge 2006) and 91 

provides a conservative estimate thanks to oversmoothing (Bowman and Azzalini 1997). 92 

 93 

We then introduced errors to the ‘true’ animal locations to obtain home range size estimates 94 

under different levels of location accuracy. We did so by drawing random errors from a bivariate 95 

normal distribution with a mean of 0 and a standard deviation (SD) ranging from 0 to 2 km in 96 

increments of 0.01. This range was selected because it would encompass Fastloc-GPS errors 97 

(Hazel et al. 2009, Dujon et al. 2014) and most Argos location class errors excluding those with 98 

the highest uncertainty such as classes 0 and B (Costa et al. 2010). Our aim here was not to 99 

evaluate specific location classes because reported errors vary considerably among studies 100 

(Table 1). Rather, we sought to assess the impact of location accuracy along a gradient that 101 

would include location qualities commonly encountered in sea turtle home range studies. For 102 

simplicity, we assumed that latitudinal and longitudinal errors were equivalent. While we are 103 

aware that Argos error distributions tend to be elliptical, with longitudinal exceeding latitudinal 104 

errors (Hays et al. 2001; Costa et al. 2010; Boyd and Brightsmith 2013), this does not affect our 105 

ability to illustrate the general impact of location quality on home range estimation across orders 106 

of magnitude of animal movements. 107 

 108 

The random errors (N = 1000 for each theoretical animal) were added to the ‘true’ simulated 109 

animal locations to create error-added location data sets. We then used the kernel method, as 110 

above, to estimate each animal’s 95% home range size using the error-added locations and 111 

calculated the percent error between this value and the true home range size. This was repeated 112 
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10 times for each animal for a total of 4×10×201 = 8040 iterations. We calculated the mean 113 

percent error at each increment of SD (location error) and smoothed the resulting curve for each 114 

simulated animal by calculating a running mean spanning three consecutive data points. For ease 115 

of visualization, percent error data were log10(x+1)-transformed. 116 

 117 

Empirical case study 118 

We equipped green turtles with Argos linked Fastloc-GPS tags (SPLASH10-BF tags, Wildlife 119 

Computers, Seattle, Washington) at three sites around the world: the Chagos Archipelago (Indian 120 

Ocean) in 2012, Shark Bay (Western Australia) in 2016 and Bonaire (Caribbean Netherlands) in 121 

2016. These units collected and transmitted both Argos and Fasloc-GPS locations. To compare 122 

home-range estimates from Argos versus Fastloc-GPS data, we selected one representative data 123 

set from each site: a green turtle tracked for 14 months in the Chagos Archipelago, one tracked 124 

for 3 months in Shark Bay and one tracked for 5 months in Bonaire. To compare the number of 125 

Fastloc-GPS versus Argos locations obtained, we used data from all the turtles equipped in the 126 

Chagos Archipelago and Shark Bay. Since the tags deployed in Bonaire were also programmed 127 

to relay other data (e.g., depth) at the expense of sending Fastloc-GPS data, we did not include 128 

these tags in the comparison of location data volume.  129 

 130 

To remove locations that were likely erroneous, we filtered Argos and Fastloc-GPS data using 131 

previously established methods. First, we examined each track and visually identified locations 132 

that appeared inconsistent with adjacent points. We then applied a filter that excluded these 133 

locations if they necessitated speeds-of-travel that were unrealistic based on known green turtle 134 

swimming speeds during migration (i.e., > 200 km d-1) (Luschi et al. 1998; Dujon et al. 2014; 135 
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Hays et al. 2014; Christiansen et al., 2017). In addition, for Fastloc-GPS, we excluded locations 136 

with a residual value ≥ 35, which is standard for Fastloc-GPS data (Dujon et al. 2014). These 137 

steps are representative of filtering applied in most Argos and Fastloc-GPS studies, and removed 138 

a small (< 1%) proportion of locations. 139 

 140 

To remove the impact of fine-scale autocorrelation, we randomly selected a single location per 141 

day from each location class (see below) for each turtle prior to estimating home range sizes. We 142 

used the R package adehabitatHR to estimate home range size, as above. However, we used a 143 

different smoothing approach since the ‘real-world’ latitude and longitude data were multi-modal 144 

(i.e., not bivariate normal) and using the reference bandwidth can cause a large amount of over-145 

smoothing in such cases, leading to overestimation of home range size (Worton 1989; Kie 2013). 146 

Instead, using a custom script in R, for each home range estimate we identified the minimum h-147 

value below which the continuous home range contour breaks up into two or more polygons (the 148 

minimum-h rule, see Fieberg and Börger 2012 and references therein). Due to low sample size in 149 

certain location classes, we pooled Argos classes 1, 2, and 3 together, lumped Fastloc-GPS 150 

locations derived from 9 satellites with those derived from 8 satellites, and excluded Argos class 151 

0 entirely. 152 

 153 

Subsequently, in order to account for the possible impact of data volume on home range 154 

estimation, we standardized the number of locations used to estimate home range size across 155 

location classes. We did so for each individual by randomly selecting 75% of the smallest sample 156 

size available in a location class for all location classes for that turtle 10 times. We then 157 

estimated the 95% home range size at each iteration and calculated the mean and SE for each 158 
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location class. Since our aim here was to evaluate the trend in home range size across location 159 

classes within each site/individual, as opposed to comparing turtle home range sizes among 160 

sites/individuals, it was not necessary to use the same volume of data for each turtle. Therefore, 161 

for our present purpose, we allowed the number of locations to vary from turtle-to-turtle based 162 

on the amount of data obtained by each tag. For the Chagos turtle, many fewer locations were 163 

available in Argos location classes 1-3 compared to other classes so we did not sub-sample this 164 

location class, instead producing a single estimate of home range size.  165 

 166 

Results 167 

Simulations 168 

The degree of error in home range size estimates in our simulations depended strongly on 169 

location accuracy (SD) and habitat size (Fig. 1). Specifically, as habitat size increased, the 170 

accuracy of locations needed to reliably estimate home range size decreased. For example, at a 171 

habitat size of 1000 km2, a location error distribution with an SD < 1.67 km was necessary to 172 

produce < 10% error in home range size estimates. In contrast, at a habitat size of 1 km2, a 173 

location error distribution with an SD of < 0.06 km was necessary to achieve < 10% error (Fig. 174 

1). The former case would likely include Argos location classes 1-3 and all Fastloc-GPS 175 

locations, while the latter case would likely only include Fastloc-GPS locations derived from ≥ 5 176 

satellites. 177 

 178 

Empirical case study 179 

For green turtles in the Chagos Archipelago, Western Australia and the Caribbean, home range 180 

estimates declined by a factor of approximately 10, 12, and 100, respectively, when moving from 181 
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the poorest to the best location quality (Fig. 2). Argos location classes A and B dramatically 182 

overestimated home range size whereas Argos location classes 1-3 provided generally 183 

comparable estimates to Fastloc-GPS data, with the exception of the Caribbean turtle (Fig. 2). 184 

However, Fastloc-GPS tracking revealed much more restricted movements and a much higher 185 

degree of patchiness in space use compared to Argos tracking, which tended to blur the pattern 186 

of space use (Fig. 3). This was true even when considering only the best-quality Argos data (i.e., 187 

location classes 1-3, Fig. 4). In this case the sparseness of class 1-3 Argos locations meant that 188 

details of how multiple focal patches were used by each animal went unobserved. Compared to 189 

location accuracy, standardizing data volume across location classes had a relatively minor 190 

impact on the trend in home range size from the poorest to best location quality for both turtles 191 

(Fig. 2).  192 

 193 

On average there were 14.6 times (range 6.8 – 27.0) more Fastloc-GPS locations obtained 194 

compared to high-quality (location class 1-3) Argos locations and this pattern for more Fastloc-195 

GPS data occurred across all individuals (Fig. 5). This increased volume of locations underlies 196 

the much clearer pattern of space use that emerged when plotting the Fastloc-GPS data and the 197 

tendency of these data to reveal how multiple small patches were used by each individual. 198 

 199 

Discussion 200 

In recent years, technological advances have led to rapid improvement in the quality of locations 201 

obtainable for air-breathing marine vertebrates and some fish and, hence, increased variability in 202 

track quality in the literature (e.g., Table 2 for sea turtles). As such, consideration of the impacts 203 

of location accuracy and data volume for home range estimation and fine-scale movement 204 
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analysis for these species is timely. We have shown that location accuracy can profoundly 205 

impact estimated home range size, with exceedingly large errors likely to occur under a 206 

combination of low location accuracy and fine-scale animal movements. Furthermore, we have 207 

shown that Fastloc-GPS tracking can reveal movement patterns in fine detail (i.e., patch use) in 208 

situations where Argos data cannot. In studies looking at space use, we emphasize that it is 209 

important to consider the level of location error inherent in the tracking system and how this 210 

error interacts with the scale of movement to impact the picture of space use that emerges (see 211 

also Montgomery et al. 2011 for terrestrial examples). Moreover, we urge caution when 212 

comparing home range estimates obtained from different tracking systems or tag configurations 213 

that provide locations of different levels of accuracy. 214 

 215 

Recent movement analyses for sea turtles have been made using light-based geolocation, radio 216 

telemetry, acoustic telemetry, Argos satellite tracking and Fastloc-GPS tracking, which have a 217 

wide range of location accuracies (Table 2). These studies all provide important space use data 218 

that are consistent within each study. For example, Schofield et al. (2010b) used Fastloc-GPS 219 

data from loggerhead turtles in the Mediterranean to show that oceanic foragers had home ranges 220 

> 50 times larger than neritic foragers, while Esteban et al. (2017) used Fastloc-GPS to quantify 221 

the number of clutches individual green turtles laid in a single breeding season. However, while 222 

Fastloc-GPS tracking has been available for several years, due to the lower cost of Argos tags, 223 

many studies still rely on Argos locations (e.g., Hawkes et al. 2011; Fujisaki et al. 2016; Shaver 224 

et al. 2016). Given the magnitude of error in home range estimates identified in our theoretical 225 

and empirical examples (see also Witt et al. 2010), we argue that comparison of home range 226 

estimates, in addition to other movement metrics (e.g., Bradshaw et al. 2007), should only be 227 
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made after carefully accounting for differences in location quality between tracks. For example, 228 

it might be of interest to examine variation in home range size over space or time using a 229 

combination of newer Fastloc-GPS and older Argos tracks. To do this reliably would require 230 

decaying the GPS data by introducing random Argos-level errors to the GPS data (similar to the 231 

approach taken in our theoretical home range analysis) and standardizing sample size among 232 

tracks. 233 

 234 

In addition to highlighting the relationship between location accuracy, the scale of animal 235 

movements and home range estimation, we have demonstrated the potential for Fastloc-GPS data 236 

to yield valuable new insights into the patterns, drivers and consequences of the movements of 237 

sea turtles at very fine spatial scales (e.g., patch use dynamics). This utility of Fastloc-GPS for 238 

examining fine-scale movements will likely apply to other marine taxa that only surface briefly 239 

including some marine mammals, birds and fish. As in our study, an increased number of 240 

Fastloc-GPS locations has been noted when Argos linked Fastloc-GPS tags have been attached 241 

to fish (Sims et al. 2009; Evans et al. 2011). The increased number of Fastloc-GPS locations we 242 

found is likely due to the fact that data for a Fastloc-GPS location can be encoded in a single 243 

Argos uplink, while many uplinks in a single satellite overpass are required to generate an Argos 244 

location of class 1-3. As such, the finding of a vastly greater volume of Fastloc-GPS locations 245 

compared to Argos locations when using Argos linked Fastloc-GPS tags will likely be broadly 246 

consistent across taxa. Furthermore, Fastloc-GPS tags can be used in data loggers, which can 247 

increase data volume by a further order of magnitude compared to the data volumes recoverable 248 

by satellite (Schofield et al. 2010b). 249 

 250 
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Future comparative studies that analyze GPS-based tracks of foraging turtles in a standardized 251 

manner hold considerable potential to advance our understanding of turtle space use, trophic 252 

relationships and functional roles in coastal ecosystems. It should be noted that, in addition to 253 

location accuracy and data volume (e.g., Seaman et al. 1999; Börger et al. 2006a,b), other 254 

components of home range analysis are also known to influence estimates of home range size 255 

and should therefore be accounted for when designing comparative studies. For example, KDEs 256 

can be strongly influenced by the smoothing parameter used (Worton 1989; Kie 2013), and the 257 

choice of smoothing parameter will depend on the structure of the location data and the 258 

particular question being asked (Fieberg and Börger 2012). Similarly, Service Argos have been 259 

trying to improve the quality of their tracking data. Specifically, Service Argos introduced a new 260 

method of estimating platform locations which combines their traditional approach – using the 261 

Doppler shift in received uplink frequencies and a least-squares algorithm – with interpolation 262 

between locations using Kalman filtering (Lopez et al. 2014). This new method of processing 263 

tends to provide smoother tracks but the autocorrelation between locations introduced by Kalman 264 

filtering will need to be considered if these data are used in home range estimation, especially 265 

when compared with tracks without Kalman filtering. We hence urge researchersto  retain both 266 

the unfiltered locations  as well as the Kalman-filtered locations and the estimated error ellipse. 267 

Doing so will create the potential to implement more sophisticated analyses accounting for the 268 

error of each single location. Refer to McClintock et al. (2015) for arguments regarding the 269 

importance of using the error ellipse and not the error circle in movement analyses as well as the 270 

importance of not discarding more ‘inaccurate’ locations (see Ironside et al. 2017 for a similar 271 

remark for terrestrial GPS data). 272 

 273 
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Moreover, aspects of the movement pattern of animals may sometimes interact with methods of 274 

data processing to influence the picture that emerges of space use. For example, visual 275 

observations have shown that green turtles often rest in certain areas at night and then travel to 276 

foraging locations during the day (Bjorndal 1980). The specifics of these movements have 277 

recently been recorded in high resolution with Fastloc-GPS tracking (Christiansen et al. 2017), 278 

with the finding that nighttime resting and daytime foraging areas may be several km apart. So, 279 

in this case, only using daytime or nighttime locations, even if they are of high resolution, would 280 

not capture the full extent of space use (see also general discussion in Fieberg and Börger 2012). 281 

Likewise, locations around dawn and dusk are needed to identify migration corridors between 282 

areas occupied during the night and day. Again, Fastloc-GPS opens up the potential of 283 

addressing these questions but, at the same time, comparative studies of space use, across 284 

individuals and across studies, will require careful consideration of these sources of variability. 285 

 286 

In conclusion, our results highlight an important yet underappreciated aspect of movement 287 

ecology study design for air-breathing marine vertebrates and some fish. Our understanding of 288 

the fine-scale movements of these taxa lags well behind that of terrestrial vertebrates, which have 289 

been tracked effectively using Argos and GPS systems for some time. For general considerations 290 

on study design, we recommend consulting the framework that has grown out of that body of 291 

work (e.g., Seaman et al. 1999; Börger et al. 2006a, b; Frair et al. 2010; Hebblewhite and 292 

Haydon 2010; Montgomery et al. 2011; Fieberg and Börger 2012; McClintock et al. 2015; 293 

Ironside et al. 2017). Here, we emphasize that location accuracy relative to the expected scale of 294 

animal movements should be a key methodological consideration and we recommend caution 295 
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when comparing home range estimates and other movement metrics derived from tracking 296 

systems with different location qualities and data volumes. 297 
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Figure captions 522 

 523 

Fig. 1: Percent error between the true and error-added 95% home range estimates for simulated 524 

animals within square-shaped habitats of 1, 10, 100 and 1000 km2 across different location 525 

qualities including all values of SD from 0-2 (A) and SD ≤ 0.3 (B). Percent error data are shown 526 

on a log10(x+1) scale due to large differences in these values at high SDs, although axis labels are 527 

untransformed for ease of interpretation. Values below the horizontal dashed line represent < 528 

10% error between the error-added and true home range size. 529 

 530 

 531 

 532 
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 533 

Fig. 2: Estimated 95% home range sizes derived from different location qualities for a green 534 

turtle tracked for 14 months in the Chagos Archipelago, western Indian Ocean (A), another 535 

tracked for 3 months in Shark Bay, Western Australia (B), and a third tracked for 5 months in 536 

Bonaire, Caribbean Netherlands. For (A) and (B), the dashed line with triangles represents home 537 

range estimates based on all available data (1 location per day) per location class while the solid 538 

line with circles represents the mean (± SE) estimate based on sub-sampled data to standardize 539 

data volume across location classes (see Materials and Methods). For the Chagos turtle, the 540 

estimate for Argos location classes 1-3 is a single value based on all available locations due to 541 

low sample size. 542 
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 543 

Fig. 3. Argos (left panels) and Fastloc-GPS (right panels) location distributions for a green turtle 544 

tracked for 14 months in the Chagos Archipelago, western Indian Ocean (A, B), another tracked 545 

for 3 months in Shark Bay, Western Australia (C, D), and a third tracked for 5 months in 546 

Bonaire, Caribbean Netherlands (E, F). Argos plots include all location data (classes A, B, 0, 1, 2 547 

and 3) while Fastloc-GPS plots include locations derived from ≥ 4 satellites. Points have been 548 

made transparent to show location density. Note differences in scale among plots. To emphasize 549 

the differences in scale, red squares within Argos panels show the extent of the Fastloc-GPS data 550 

for that study site. 551 
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 552 

 553 

Fig. 4. Differences in movement detail provided by the most accurate Argos data (classes 1-3, 554 

left panels) and Fastloc-GPS data (locations derived from ≥ 4 satellites, right panels) for the three 555 

green turtles. Points have been made transparent to show location density. Note minor 556 

differences in scale among plots. 557 
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 559 
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 560 

 561 

 562 

Fig. 5. For nine turtles tracked using Fastloc GPS Argos transmitters, the proportion of Fastloc 563 

GPS locations (derived from ≥ 4 satellites and with residual values < 35, filled bars) compared to 564 

high-accuracy Argos locations (location class 1-3, open bars). Turtles 1-4 were equipped on 565 

Diego Garcia, Chagos Archipelago while turtles 5-9 were tagged in Shark Bay, Western 566 

Australia. 567 
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Tables 568 

Table 1: Variation in Argos location class accuracies in three studies that reported the same statistics (68th percentile or 1 SD of a 569 

normal distribution, in km) for latitudinal and longitudinal error separately. 570 

  Error (68th percentile, lat/long) 
Source Method LC B LC A LC 0 LC 1  LC 2 LC 3 
Hays et al. 2001 stationary test on land 5.23 / 7.79 1.39 / 0.81 4.29 / 15.02 1.03 / 1.62 0.28 / 0.62 0.12 / 0.32 
Vincent et al. 2002 on animals, study pool 4.596 / 7.214 0.762 / 1.244 2.271 / 3.308 0.494 / 1.021 0.259 / 0.485 0.157 / 0.295 
Costa et al. 2010 on animals, at sea 4.642 / 8.253 2.788 / 4.373 1.795 / 2.855 0.574 / 0.879 0.468 / 0.729 0.225 / 0.340 
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 572 
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Table 2: Summary of telemetry methods used to track sea turtle movements and their 573 

approximate location accuracy. 574 

Method 
Approximate location 

accuracy Typical movements revealed Examples 
Light-based 
geolocation 

Tens to hundreds of km Long-term, coarse-scale 
movements (e.g., breeding 
migrations) 

Fuller et al. 2008  
Swimmer et al. 2009  

Radio telemetry Tens of m to > 1 km Short-term, fine-scale 
movements in a spatially 
restricted area 

Renaud et al. 1995 
Whiting and Miller 1998 

Active acoustic 
telemetry 

< 10 to hundreds of m Short-term, fine-scale 
movements in a spatially 
restricted area 

Ogden et al. 1983 
Seminoff and Jones 2006 

Passive acoustic 
telemetry 

< 10 to hundreds of m Long-term, fine-scale 
movements in a spatially 
restricted area 

Taquet et al. 2006 
Thums et al. 2013 

Argos satellite 
tracking 

Hundreds of m to > 10 km Long-term, coarse to medium-
scale movements (e.g., 
breeding migrations, transits 
between foraging sites) 

Luschi et al. 1998  
Papi et al. 1995 
Godley et al. 2008 (review) 

Fastloc GPS 
tracking 

Tens to hundreds of m Long-term, fine-scale 
movements (e.g., foraging 
patch use, breeding 
migrations, inter-nesting 
movements) 

Hazel et al. 2009  
Schofield et al. 2010a, b 
Dujon et al. 2014 
Christiansen et al. 2017  
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