912 research outputs found

    Duelo entre economistas

    Get PDF

    Impact and Compression-After-Impact Performance of a Thin Z-Pinned Composite Laminate

    Get PDF
    Impact and compression-after-impact (CAI) tests were carried out on [02/ ± 45]s carbon/epoxy samples to characterize the effect of z-pinning on the delamination resistance and damage tolerance properties of the laminate. Unpinned and z-pinned samples were subjected to impacts between 2 and 36 J to produce damage conditions that extend from barely visible impact damage (BVID) to complete penetration. The damage induced by impact and the damage modes leading to ultimate CAI failure were examined by Xradiography and by direct observations of the sample faces during CAI loading. The analyses indicate that the role of z-pins on the impact and CAI response of the laminate is dependent on the size and features of the damage. Z-pins do not modify the structural response to impact of the laminate, but they are effective in reducing the extent of damage for impact energies above a threshold value. Z-pinning is also effective in improving the CAI strength of the laminate for impact energies above this threshold value, even though it degrades the residual compressive strength for lower impact energies. Reductions in impact delamination size of up to 50% and improvements in CAI strength of about 20% were achieved by z-pinning for highenergy impacts. The mechanisms by which the z-pins affect the CAI response of the samples are illustrated and examined in detail for different impact damage severities

    Triple correlation for detection of damage-related nonlinearities in composite structures

    Get PDF
    Nonlinear effects in vibration responses are investigated for the undamaged composite plate and the composite plate with a delamination. The analysis is focused on higher harmonic generation in vibration responses for various excitation amplitude levels. This effect is investigated using the triple correlation technique. The dynamics of composite plate was modelled using two-dimensional finite elements and the classical lamination theory. The doubled-node approach was used to model delamination area. Mode shapes and natural frequencies were estimated based on numerical models. Next, the delamination divergence analysis was used to obtain relative displacements for delaminated plies. Experimental modal analysis test was carried out to verify the numerical models. The two strongest vibration modes as well as two vibration modes with the smallest and largest motion level of delaminated plies were selected for nonlinear vibration test. The Fisher criterion was employed to verify the effectiveness and confidence level of the proposed technique. The results show that the method can be used not only to reveal nonlinearities, but also to reliably detect impact damage in composites. These results are confirmed using the statistical analysis

    Energy absorption capability of nanomodified glass/epoxy laminates

    Get PDF
    Abstract The impact response of standard and clay-modified vacuum-infused glass/epoxy laminates was investigated. The activity was oriented to evaluate the enhancements in the energy absorption capability of the laminates due to the nanomodification. Nanomodification was achieved by using Cloisite 30B nanoclays by Southern Clay. Low velocity impact tests were carried out on flat samples of about 4 mm thicknessby a drop-weight tower. The results clearly indicate that the nanomodified laminates have a greater capability to absorb the impact energy (with up to 30% increases in dissipated energy) with respect to the standard laminates, also in combination with a decrease of the peak impact force (from 10 to 15%). In some ways, this behaviour can be partly justified by the larger damage exhibited by nanomodified laminates, with projected damage areas more than double the damage areas of standard panels, for the same impact energy

    Long Term Endocrine Regulation of Nucleoside Transporters in Rat Intestinal Epithelial Cells

    Get PDF
    We studied the regulation of nucleoside transporters in intestinal epithelial cells upon exposure to either differentiating or proliferative agents. Rat intestinal epithelial cells (line IEC-6) were incubated in the presence of differentiating (glucocorticoids) or proliferative (EGF and TGF-α) agents. Nucleoside uptake rates and nucleoside transporter protein and mRNA levels were assessed. The signal transduction pathways used by the proliferative stimuli were analyzed. We found that glucocorticoids induce an increase in sodium-dependent, concentrative nucleoside transport rates and in protein and mRNA levels of both rCNT2 and rCNT1, with negligible effects on the equilibrative transporters. EGF and TGF-α induce an increase in the equilibrative transport rate, mostly accounted for by an increase in rENT1 activity and mRNA levels, rENT2 mRNA levels remaining unaltered. This effect is mimicked by another proliferative stimulus that functions as an in vitro model of epithelial wounding. Here, rENT1 activity and mRNA levels are also increased, although the signal transduction pathways used by the two stimuli are different. We concluded that differentiation of rat intestinal epithelial cells is accompanied by increased mature enterocyte features, such as concentrative nucleoside transport (located at the brush border membrane of the enterocyte), thus preparing the cell for its ultimate absorptive function. A proliferative stimulus induces the equilibrative nucleoside activities (mostly through ENT1) known to be located at the basolateral membrane, allowing the uptake of nucleosides from the bloodstream for the increased demands of the proliferating cell

    Modification of HF-treated silicon (100) surfaces by scanning tunneling microscopy in air under imaging conditions

    Get PDF
    The modification of HF-etched silicon (100) surface with a scanning tunneling microscope(STM) operated in air is studied for the first time in samples subjected to the standard HF etching without the follow-up rinsing in H2O. The modifications are produced in air under normal STM imaging conditions (V t =−1.4 V and I t =2 nA). The simultaneous acquisition of topographical, current image tunneling spectroscopy and local barrier-height images clearly shows that the nature of the modification is not only topographical but also chemical. The features produced with a resolution better than 25 nm are attributed to a tip-induced oxidation enhanced by the presence of fluorine on the surface

    Detection of Tephra Layers in Antarctic Sediment Cores with Hyperspectral Imaging

    Get PDF
    Tephrochronology uses recognizable volcanic ash layers (from airborne pyroclastic deposits, or tephras) in geological strata to set unique time references for paleoenvironmental events across wide geographic areas. This involves the detection of tephra layers which sometimes are not evident to the naked eye, including the so-called cryptotephras. Tests that are expensive, time-consuming, and/or destructive are often required. Destructive testing for tephra layers of cores from difficult regions, such as Antarctica, which are useful sources of other kinds of information beyond tephras, is always undesirable. Here we propose hyperspectral imaging of cores, Self-Organizing Map (SOM) clustering of the preprocessed spectral signatures, and spatial analysis of the classified images as a convenient, fast, non-destructive method for tephra detection. We test the method in five sediment cores from three Antarctic lakes, and show its potential for detection of tephras and cryptotephras.info:eu-repo/semantics/publishedVersio

    Duelo entre economistas

    Get PDF

    Optical Evaluation on Delamination Buckling of Composite Laminate with Impact Damage

    Get PDF
    The delamination buckling and growth behaviors of a cross-ply composite laminate with damage induced by low velocity impact are investigated optically using three-dimensional digital image correlation (3D-DIC) method. For the 3D deformation measurement, the 3D-DIC setup comprised of two CCD cameras was adopted. The rectangle specimen was impacted under the impact energy of 7.0 J using a drop-weight testing machine, and the impact damage was detected by means of X-ray nondestructive evaluation (NDE) technique. The 3D deformation field measured with the optical system clearly reveals that the delamination buckling characteristic of the specimen mainly appears local deformation mode under compression after impact test. Moreover, the behavior of delamination growth evaluated by the 3D-DIC optical method reasonably agrees with the NDE observed damage result after compression

    Analysis of elastic nonlinearity for impact damage detection in composite laminates

    Get PDF
    This paper concerns the experimental analysis of nonlinear response features of a composite laminate plate for impact damage detection. The measurement procedure is based on the Scaling Subtraction Method (SSM) and consists in exciting the damaged specimen with two sinusoidal signals at different amplitude. The linearly rescaled response signal at low amplitude excitation is subtracted from the response at large amplitude excitation to extract the nonlinear signatures. The latter are analysed in the time domain to infer the presence of damage. Results are compared with frequency domain analyses using the nonlinear vibro-acoustic modulation technique (NWMS). Changes in amplitude and phase as well as modulation effects of the acquired responses are also monitored. Surface-bonded, low profile piezoceramic transducers are used for excitation and sensing. Both measurements techniques are applied to detect barely visible impact damage in laminate composite plate. Non-destructive penetrant-enhanced X-ray inspections are carried out to characterize the extent of internal damage. The behavior of the nonlinear features and the sensitivity of each technique are also investigated in the paper
    corecore