71 research outputs found

    Familial aggregation of atrial fibrillation: a study in Danish twins

    Get PDF
    BACKGROUND: Heritability may play a role in non-familial atrial fibrillation (AF). We hypothesized that a monozygotic (MZ) twin whose co-twin was diagnosed with AF would have an increased risk of the disease compared to a dizygotic (DZ) twin in the same situation. METHODS AND RESULTS: A sample of 1137 same-sex twin pairs (356 MZ and 781 DZ pairs) where one or both members were diagnosed with AF were identified in The Danish Twin Registry. Concordance rates were twice as high for MZ pairs than for DZ pairs regardless of gender, 22.0% vs. 11.6% (p<0.0001). In a Cox regression of event free survival times, we compared the time span between occurrences of disease in MZ and DZ twins. The unaffected twin was included, when his or her twin-sibling (the index twin) was diagnosed with AF. After adjustment for age at entry, MZ twins had a significantly shorter event free survival time (hazard ratio: 2.0 (95% confidence interval (CI): 1.3 – 3.0)) thereby indicating a genetic component. Using biometric models, we estimated the heritability of AF to be 62 % (55 % – 68 %), due to additive genetics. There were no significant differences across genders. CONCLUSION: All the analyses of twin similarities in the present study indicate that genetic factors play a substantial role in the risk of AF for both genders. The recurrence risk for co-twins (12–22%) is clinically relevant and suggests that co-twins of AF-affected twins belong to a high-risk group for AF

    Multi-omic detection of Mycobacterium leprae in archaeological human dental calculus

    Get PDF
    Mineralized dental plaque (calculus) has proven to be an excellent source of ancient biomolecules. Here we present a Mycobacterium leprae genome (6.6-fold), the causative agent of leprosy, recovered via shotgun sequencing of sixteenth-century human dental calculus from an individual from Trondheim, Norway. When phylogenetically placed, this genome falls in branch 3I among the diversity of other contemporary ancient strains from Northern Europe. Moreover, ancient mycobacterial peptides were retrieved via mass spectrometry-based proteomics, further validating the presence of the pathogen. Mycobacterium leprae can readily be detected in the oral cavity and associated mucosal membranes, which likely contributed to it being incorporated into this individual's dental calculus. This individual showed some possible, but not definitive, evidence of skeletal lesions associated with early-stage leprosy. This study is the first known example of successful multi-omics retrieval of M. leprae from archaeological dental calculus. Furthermore, we offer new insights into dental calculus as an alternative sample source to bones or teeth for detecting and molecularly characterizing M. leprae in individuals from the archaeological record.publishedVersio

    Data for Millennia of genomic stability within the invasive Para C Lineage of Salmonella enterica: date estimation 1

    Get PDF
    Salmonella enterica serovar Paratyphi C is the causative agent of enteric (paratyphoid) fever. While today a potentially lethal infection of humans that occurs in Africa and Asia, early 20th century observations in Eastern Europe suggest it may once have had a wider-ranging impact on human societies. We recovered a draft Paratyphi C genome from the 800-year-old skeleton of a young woman in Trondheim, Norway, who likely died of enteric fever. Analysis of this genome against a new, significantly expanded database of related modern genomes demonstrated that Paratyphi C is descended from the ancestors of swine pathogens, serovars Choleraesuis and Typhisuis, together forming the Para C Lineage. Our results indicate that Paratyphi C has been a pathogen of humans for at least 1,000 years, and may have evolved after zoonotic transfer from swine during the Neolithic period

    Multi-omic detection of <i>Mycobacterium leprae</i> in archaeological human dental calculus

    Get PDF
    Mineralized dental plaque (calculus) has proven to be an excellent source of ancient biomolecules. Here we present a Mycobacterium leprae genome (6.6-fold), the causative agent of leprosy, recovered via shotgun sequencing of sixteenth-century human dental calculus from an individual from Trondheim, Norway. When phylogenetically placed, this genome falls in branch 3I among the diversity of other contemporary ancient strains from Northern Europe. Moreover, ancient mycobacterial peptides were retrieved via mass spectrometry-based proteomics, further validating the presence of the pathogen. Mycobacterium leprae can readily be detected in the oral cavity and associated mucosal membranes, which likely contributed to it being incorporated into this individual's dental calculus. This individual showed some possible, but not definitive, evidence of skeletal lesions associated with early-stage leprosy. This study is the first known example of successful multi-omics retrieval of M. leprae from archaeological dental calculus. Furthermore, we offer new insights into dental calculus as an alternative sample source to bones or teeth for detecting and molecularly characterizing M. leprae in individuals from the archaeological record.publishedVersio

    The genetic history of Scandinavia from the Roman Iron Age to the present

    Get PDF
    The authors acknowledge support from the National Genomics Infrastructure in Stockholm funded by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish Research Council, and SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure. We used resources from projects SNIC 2022/23-132, SNIC 2022/22-117, SNIC 2022/23-163, SNIC 2022/22-299, and SNIC 2021-2-17. This research was supported by the Swedish Research Council project ID 2019-00849_VR and ATLAS (Riksbankens Jubileumsfond). Part of the modern dataset was supported by a research grant from Science Foundation Ireland (SFI), grant number 16/RC/3948, and co-funded under the European Regional Development Fund and by FutureNeuro industry partners.Peer reviewedPublisher PD

    Pan-genome Analysis of Ancient and Modern Salmonella enterica Demonstrates Genomic Stability of the Invasive Para C Lineage for Millennia.

    Get PDF
    Salmonella enterica serovar Paratyphi C causes enteric (paratyphoid) fever in humans. Its presentation can range from asymptomatic infections of the blood stream to gastrointestinal or urinary tract infection or even a fatal septicemia [1]. Paratyphi C is very rare in Europe and North America except for occasional travelers from South and East Asia or Africa, where the disease is more common [2, 3]. However, early 20th-century observations in Eastern Europe [3, 4] suggest that Paratyphi C enteric fever may once have had a wide-ranging impact on human societies. Here, we describe a draft Paratyphi C genome (Ragna) recovered from the 800-year-old skeleton (SK152) of a young woman in Trondheim, Norway. Paratyphi C sequences were recovered from her teeth and bones, suggesting that she died of enteric fever and demonstrating that these bacteria have long caused invasive salmonellosis in Europeans. Comparative analyses against modern Salmonella genome sequences revealed that Paratyphi C is a clade within the Para C lineage, which also includes serovars Choleraesuis, Typhisuis, and Lomita. Although Paratyphi C only infects humans, Choleraesuis causes septicemia in pigs and boar [5] (and occasionally humans), and Typhisuis causes epidemic swine salmonellosis (chronic paratyphoid) in domestic pigs [2, 3]. These different host specificities likely evolved in Europe over the last ∼4,000 years since the time of their most recent common ancestor (tMRCA) and are possibly associated with the differential acquisitions of two genomic islands, SPI-6 and SPI-7. The tMRCAs of these bacterial clades coincide with the timing of pig domestication in Europe [6]

    The population genomic legacy of the second plague pandemic

    Get PDF
    Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.publishedVersio

    The population genomic legacy of the second plague pandemic

    Get PDF
    Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics
    corecore