143 research outputs found

    Are Cuckoos Maximizing Egg Mimicry by Selecting Host Individuals with Better Matching Egg Phenotypes?

    Get PDF
    Background: Avian brood parasites and their hosts are involved in complex offence-defense coevolutionary arms races. The most common pair of reciprocal adaptations in these systems is egg discrimination by hosts and egg mimicry by parasites. As mimicry improves, more advanced host adaptations evolve such as decreased intra- and increased interclutch variation in egg appearance to facilitate detection of parasitic eggs. As interclutch variation increases, parasites able to choose hosts matching best their own egg phenotype should be selected, but this requires that parasites know their own egg phenotype and select host nests correspondingly. Methodology/Principal Findings: We compared egg mimicry of common cuckoo Cuculus canorus eggs in naturally parasitized marsh warbler Acrocephalus palustris nests and their nearest unparasitized conspecific neighbors having similar laying dates and nest-site characteristics. Modeling of avian vision and image analyses revealed no evidence that cuckoos parasitize nests where their eggs better match the host eggs. Cuckoo eggs were as good mimics, in terms of background and spot color, background luminance, spotting pattern and egg size, of host eggs in the nests actually exploited as those in the neighboring unparasitized nests. Conclusions/Significance: We reviewed the evidence for brood parasites selecting better-matching host egg phenotypes from several relevant studies and argue that such selection probably cannot exist in host-parasite systems where hos

    High Dengue Case Capture Rate in Four Years of a Cohort Study in Nicaragua Compared to National Surveillance Data

    Get PDF
    Dengue is a major public health problem in tropical and subtropical regions; however, under-reporting of cases to national surveillance systems hinders accurate knowledge of disease burden and costs. Laboratory-confirmed dengue cases identified through the Nicaraguan Pediatric Dengue Cohort Study (PDCS) were compared to those reported from other health facilities in Managua to the National Epidemiologic Surveillance (NES) program of the Nicaraguan Ministry of Health. Compared to reporting among similar pediatric populations in Managua, the PDCS identified 14 to 28 (average 21.3) times more dengue cases each year per 100,000 persons than were reported to the NES. Applying these annual expansion factors to national-level data, we estimate that the incidence of confirmed pediatric dengue throughout Nicaragua ranged from 300 to 1000 cases per 100,000 persons. We have estimated a much higher incidence of dengue than reported by the Ministry of Health. A country-specific expansion factor for dengue that allows for a more accurate estimate of incidence may aid governments and other institutions calculating disease burden, costs, resource needs for prevention and treatment, and the economic benefits of drug and vaccine development

    Integrated methodological framework fos assesing the risk of failure in water supply incorporating drought forecast. Case study: Andean regulated river basin

    Full text link
    [EN] Hydroclimatic drought conditions can affect the hydrological services offered by mountain river basins causing severe impacts on the population, becoming a challenge for water resource managers in Andean river basins. This study proposes an integrated methodological framework for assessing the risk of failure in water supply, incorporating probabilistic drought forecasts, which assists in making decisions regarding the satisfaction of consumptive, non-consumptive and environmental requirements under water scarcity conditions. Monte Carlo simulation was used to assess the risk of failure in multiple stochastic scenarios, which incorporate probabilistic forecasts of drought events based on a Markov chains (MC) model using a recently developed drought index (DI). This methodology was tested in the Machángara river basin located in the south of Ecuador. Results were grouped in integrated satisfaction indexes of the system (DSIG). They demonstrated that the incorporation of probabilistic drought forecasts could better target the projections of simulation scenarios, with a view of obtaining realistic situations instead of optimistic projections that would lead to riskier decisions. Moreover, they contribute to more effective results in order to propose multiple alternatives for prevention and/or mitigation under drought conditions.This study was part of the doctoral thesis of Aviles A. at the Technical University of Valencia. This research was funded by the University of Cuenca through its Research Department (DIUC) and the Municipal public enterprise of telecommunications, drinking water, sewage and sanitation of Cuenca (ETAPA) through the projects: BIdentificacion de los procesos hidrometeorologicos que desencadenan inundaciones en la ciudad de Cuenca usando un radar de precipitacion" and "Ciclos meteorologicos y evapotranspiracion a lo largo de una gradiente altitudinal del Parque Nacional Cajas". The authors also thank INAMHI and the CBRM for providing the information for this study. The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its financial support through the ERAS project (CTM2016-77804-P). We thank Angel Vazquez, who helped in the programming of the multiple simulations. Also we thank to the TropiSeca project.Avilés-Añazco, A.; Solera Solera, A.; Paredes Arquiola, J.; Pedro Monzonís, M. (2018). Integrated methodological framework fos assesing the risk of failure in water supply incorporating drought forecast. Case study: Andean regulated river basin. Water Resources Management. 32(4):1209-1223. https://doi.org/10.1007/s11269-017-1863-7S12091223324Andreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J Hydrol 177(3-4):269–291. https://doi.org/10.1016/0022-1694(95)02963-XAndreu J, Solera A, Capilla J, Ferrer J (2007) Modelo SIMGES para simulación de cuencas. Manual de usuario v3. 00. Universidad Politécnica de Valencia, ValenciaAndreu J, Ferrer J, Perez MA et al (2013) Drought planning and management in the Júcar River Basin, Spain. In: Schwabe K et al (eds) Drought in arid and semi-arid regions. Springer science, Dordrecht, pp 237–249. https://doi.org/10.1007/978-94-007-6636-5_13Avilés A, Solera A (2013) Análisis de sistemas de recursos hídricos de la cuenca del rio Tomebamba en Ecuador, mediante modelos estocásticos y de gestión. In: Solera A, Paredes J, Andreu J (eds) Aplicaciones de sistemas soporte a la decisión en planificación y gestión integradas de cuencas hidrográficas. Marcombo, Barcelona, España pp 51–61Avilés A, Célleri R, Paredes J, Solera A (2015) Evaluation of Markov chain based drought forecasts in an Andean Regulated River basin using the skill scores RPS and GMSS. Water Resour Manag 29(6):1949–1963. https://doi.org/10.1007/s11269-015-0921-2Avilés A, Célleri R, Solera A, Paredes J (2016) Probabilistic forecasting of drought events using Markov chain-and Bayesian network-based models: a case study of an Andean Regulated River Basin. Water 8:1–16Barua S, Ng A, Perera B (2012) Drought assessment and forecasting: a case study on the Yarra River catchment in Victoria, Australia. Aust J Water Resour 15(2):95–108. https://doi.org/10.7158/W10-848.2012.15.2Bazaraa MS, Jarvis JJ, Sherali HD (2011) Linear programming and network flows, fourth Edi. John Wiley & Sons, New JerseyBrown C, Baroang KM, Conrad E et al (2010) IRI technical report 10–15, managing climate risk in water supply systems. Palisades, NYCancelliere A, Di Mauro G, Bonaccorso B, Rossi G (2007) Drought forecasting using the standardized precipitation index. Water Resour Manag 21(5):801–819. https://doi.org/10.1007/s11269-006-9062-yCancelliere A, Nicolosi V, Rossi G (2009) Assessment of drought risk in water supply systems in coping with drought risk in agriculture and water supply systems. Advances in natural and technological hazards research 26. In: Coping with drought risk in agriculture. Springer, pp 93–109. https://doi.org/10.1007/978-1-4020-9045-5_8Chen YD, Zhang Q, Xiao M, Singh VP, Zhang S (2016) Probabilistic forecasting of seasonal droughts in the Pearl River basin, China. Stoch Environ Res Risk Assess 30(7):2031–2040. https://doi.org/10.1007/s00477-015-1174-6Gong G, Wang L, Condon L, Shearman A, Lall U (2010) A simple framework for incorporating seasonal Streamflow forecasts into existing water resource management practices. JAWRA J Am Water Resour Assoc 46(3):574–585. https://doi.org/10.1111/j.1752-1688.2010.00435.xHaro D, Solera A, Paredes J, Andreu J (2014) Methodology for drought risk assessment in within-year regulated reservoir systems. Application to the Orbigo River system (Spain). Water Resour Manag 28(11):3801–3814. https://doi.org/10.1007/s11269-014-0710-3Haro-Monteagudo D, Solera A, Andreu J (2017) Drought early warning based on optimal risk forecasts in regulated river systems: application to the Jucar River basin (Spain). J Hydrol 544:36–45. https://doi.org/10.1016/j.jhydrol.2016.11.022Hashimoto T, Loucks DP, Stedinger JR (1982) Reliability, resiliency, and vulnerability criteria. Water Resour Res 18(1):14–20. https://doi.org/10.1029/WR018i001p00014Hwang Y, Carbone GJ (2009) Ensemble forecasts of drought indices using a conditional residual resampling technique. J Appl Meteorol Climatol 48(7):1289–1301. https://doi.org/10.1175/2009JAMC2071.1Kao S-C, Govindaraju RS (2010) A copula-based joint deficit index for droughts. J Hydrol 380(1-2):121–134. https://doi.org/10.1016/j.jhydrol.2009.10.029Keyantash JA, Dracup JA (2004) An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour Res 40(9):1–13. https://doi.org/10.1029/2003WR002610Khadr M (2016) Forecasting of meteorological drought using hidden Markov model (case study: the upper Blue Nile river basin, Ethiopia). Ain Shams Eng J 7(1):47–56. https://doi.org/10.1016/j.asej.2015.11.005Madadgar S, Moradkhani H (2013) A Bayesian framework for probabilistic seasonal drought forecasting. J Hydrometeorol 14(6):1685–1706. https://doi.org/10.1175/JHM-D-13-010.1Madadgar S, Moradkhani H (2014) Spatio-temporal drought forecasting within Bayesian networks. J Hydrol 512:134–146. https://doi.org/10.1016/j.jhydrol.2014.02.039Mahmoudzadeh H, Mahmoudzadeh H, Afshar M, Yousefi S (2016) Applying first-order Markov chains and SPI drought index to monitor and forecast drought in West Azerbaijan Province of Iran. Int J Geo Sci Environ Plan 1:44–53. 10.22034/ijgsep.2016.40669Mishra AK, Singh VP (2010) Review paper a review of drought concepts. J Hydrol 391(1-2):202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23(5):881–897. https://doi.org/10.1007/s11269-008-9305-1Ochola WO, Kerkides P (2003) A Markov chain simulation model for predicting critical wet and dry spells in Kenya: Analysing rainfall events in the kano plains. Irrig Drain 52(4):327–342. https://doi.org/10.1002/ird.094Paulo AA, Pereira LS (2007) Prediction of SPI drought class transitions using Markov chains. Water Resour Manag 21(10):1813–1827. https://doi.org/10.1007/s11269-006-9129-9Phan TD, Smart JCR, Capon SJ, Hadwen WL, Sahin O (2016) Applications of Bayesian belief networks in water resource management: a systematic review. Environ Model Softw 85:98–111. https://doi.org/10.1016/j.envsoft.2016.08.006Pouget L, Roldán T, Gómez M et al (2015) Use of seasonal climate predictions in the water sector—preliminary results from the EUPORIAS project. In: Andreu J, Solera A, Paredes J et al (eds) Drought: research and science-policy interfacing. Taylor & Francis Group, London, UK, p 247Rossi G, Cancelliere A (2013) Managing drought risk in water supply systems in Europe: a review. Int J Water Resour Dev 29(2):272–289. https://doi.org/10.1080/07900627.2012.713848Rossi G, Caporali E, Garrote L (2012) Definition of risk indicators for reservoirs management optimization. Water Resour Manag 26(4):981–996. https://doi.org/10.1007/s11269-011-9842-xSánchez S, Andreu J, Solera A (2001) Gestión de Recursos Hídricos con Decisiones Basadas en Estimación del Riesgo. Universidad Politécnica De Valencia, ValenciaSandoval-Solis S, McKinney DC, Loucks M (2011) Sustainability index for water resources planning and management. J Water Resour Plan Manag 137(5):381–390. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134Sankarasubramanian A, Lall U, Devineni N, Espinueva S (2009) The role of monthly updated climate forecasts in improving intraseasonal water allocation. J Appl Meteorol Climatol 48(7):1464–1482. https://doi.org/10.1175/2009JAMC2122.1Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35(2):1–7. https://doi.org/10.1029/2007GL032487Staudinger M, Stahl K, Seibert J (2014) A drought index accounting for snow. Water Resour Res 50(10):7861–7872. https://doi.org/10.1002/2013WR015143Sveinsson O, Salas JD, Lane W, Frevert D (2007) Stochastic analysis, modeling, and simulation (SAMS) version 2007, user’s manual. Computing Hydrology Laboratory, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, ColoradoSvoboda M, Hayes M, Wilhite D, Tadesse T (2004) Recent advances in drought monitoring. Drought Mitig Cent Fac Publ 6:6Vogel RM (2017) Stochastic watershed models for hydrologic risk management. Water Secur 1:28–35. https://doi.org/10.1016/j.wasec.2017.06.001Wilks DS (2011) Statistical methods in the atmospheric sciences, third edit. Academic Press, USAWorld Meteorological Organization (2012) Standardized precipitation index user Guide (M. Svoboda, M. Hayes and D. Wood). (WMO - No. 1090), Geneva

    An experimental test of host’s life history traits modulation in response to cuckoo parasitism risk

    Get PDF
    Hosts can counteract parasites through defences based on resistance and/or tolerance. The mechanistic basis of tolerance, which involve defensive mechanisms minimizing parasite damage after a successful parasitic attack, remains poorly explored in the study of cuckoo-host interactions. Here, we experimentally explore the possibility that the risk of great spotted cuckoo Clamator glandarius parasitism may induce tolerance defences in magpie Pica pica hosts through plasticity in life-history traits. We predict that magpies exposed to auditory cues indicating high parasitism risk will more likely exhibit resistance and/or modify their life-history traits to minimize parasitism costs (i.e. tolerance) compared to magpies under low parasitism risk. We found that manipulating the perceived parasitism risk did not affect host resistance (i.e. rejection of parasitic eggs) nor host life-history traits. Unexpectedly, host's egg volume increased over the season in nests exposed to auditory cues of control non-harmful hoopoes Upupa epops. Our results do not provide support for inducible defences (either based on resistance or tolerance) in response to risk of parasitism in magpie hosts. Even so, we encourage studying plastic expression of breeding strategies in response to risk of cuckoo parasitism to achieve a better understanding of the mechanistic basis of tolerance defences.This work was supported by the Spanish Ministry of Education and Science/FEDER (Projects CGL2011-27561/BOS and CGL2014-56769-P to D. P. and J.M.A.). D.P. was supported by the Government of Extremadura while writing (contract number TA13002). M.E.G. was supported by the Spanish Ministry of Economy and Competitiveness (grant number BES-2012-051898).

    Insights into the migration of the European Roller from ring recoveries

    Get PDF
    AbstractDespite recent advances in avian tracking technology, archival devices still present several limitations. Traditional ring recoveries provide a complementary method for studying migratory movements, particularly for cohorts of birds with a low return rate to the breeding site. Here we provide the first international analysis of ring recovery data in the European Roller Coracias garrulus, a long-distance migrant of conservation concern. Our data comprise 58 records of Rollers ringed during the breeding season and recovered during the non-breeding season. Most records come from Eastern Europe, half are of juveniles and over three quarters are of dead birds. Thus, ring recoveries provide migration data for cohorts of Rollers—juveniles and unsuccessful migrants—for which no information currently exists, complementing recent tracking studies. Qualitatively, our results are consistent with direct tracking studies, illustrating a broad-front migration across the Mediterranean Basin in autumn and the use of the Arabian Peninsula by Rollers from eastern populations in spring. Autumn movements were, on average, in a more southerly direction for juveniles than adults, which were more easterly. Juvenile autumn recovery direction also appeared to be more variable than in adults, though this difference was not statistically significant. This is consistent with juveniles following a naïve vector-based orientation program, and perhaps explains the ‘moderate’ migratory connectivity previously described for the Roller. In the first (qualitative) analysis of Roller non-breeding season mortality, we highlight the high prevalence of shooting. The recovery age ratio was juvenile-biased in autumn but adult-biased in spring. Although not statistically significant, this difference points towards a higher non-breeding season mortality of juveniles than adults. Our study demonstrates the complementarity of ring recoveries to direct tracking, providing an insight into the migration of juvenile Rollers and non-breeding season mortality

    Morphological Evolution of Spiders Predicted by Pendulum Mechanics

    Get PDF
    [Background] Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities.[Methodology/Principal Findings] We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders).[Conclusions/Significance] Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.This paper has been written under a Ramón y Cajal research contract from the Spanish Ministry of Science and Culture (MEC) to JML and a FPI scholarship (BES-2005-9234) to GC. This work has been funded by MEC grants CGL2004-03153 and CGL2007-60520 to JML and GC, as well as CGL2005-01771 to EMPeer reviewe

    Coevolution in Action: Disruptive Selection on Egg Colour in an Avian Brood Parasite and Its Host

    Get PDF
    Trait polymorphism can evolve as a consequence of frequency-dependent selection. Coevolutionary interactions between hosts and parasites may lead to selection on both to evolve extreme phenotypes deviating from the norm, through disruptive selection.Here, we show through detailed field studies and experimental procedures that the ashy-throated parrotbill (Paradoxornis alphonsianus) and its avian brood parasite, the common cuckoo (Cuculus canorus), have both evolved egg polymorphism manifested in discrete immaculate white, pale blue, and blue egg phenotypes within a single population. In this host-parasite system the most common egg colours were white and blue, with no significant difference in parasitism rates between hosts laying eggs of either colour. Furthermore, selection on parasites for countering the evolution of host egg types appears to be strong, since ashy-throated parrotbills have evolved rejection abilities for even partially mimetic eggs.The parrotbill-cuckoo system constitutes a clear outcome of disruptive selection on both host and parasite egg phenotypes driven by coevolution, due to the cost of parasitism in the host and by host defences in the parasite. The present study is to our knowledge the first to report the influence of disruptive selection on evolution of discrete phenotypes in both parasite and host traits in an avian brood parasitism system

    Outcomes of Brood Parasite–Host Interactions Mediated by Egg Matching: Common Cuckoos Cuculus canorus versus Fringilla Finches

    Get PDF
    Antagonistic species often interact via matching of phenotypes, and interactions between brood parasitic common cuckoos (Cuculus canorus) and their hosts constitute classic examples. The outcome of a parasitic event is often determined by the match between host and cuckoo eggs, giving rise to potentially strong associations between fitness and egg phenotype. Yet, empirical efforts aiming to document and understand the resulting evolutionary outcomes are in short supply.We used avian color space models to analyze patterns of egg color variation within and between the cuckoo and two closely related hosts, the nomadic brambling (Fringilla montifringilla) and the site fidelic chaffinch (F. coelebs). We found that there is pronounced opportunity for disruptive selection on brambling egg coloration. The corresponding cuckoo host race has evolved egg colors that maximize fitness in both sympatric and allopatric brambling populations. By contrast, the chaffinch has a more bimodal egg color distribution consistent with the evolutionary direction predicted for the brambling. Whereas the brambling and its cuckoo host race show little geographical variation in their egg color distributions, the chaffinch's distribution becomes increasingly dissimilar to the brambling's distribution towards the core area of the brambling cuckoo host race.High rates of brambling gene flow is likely to cool down coevolutionary hot spots by cancelling out the selection imposed by a patchily distributed cuckoo host race, thereby promoting a matching equilibrium. By contrast, the site fidelic chaffinch is more likely to respond to selection from adapting cuckoos, resulting in a markedly more bimodal egg color distribution. The geographic variation in the chaffinch's egg color distribution could reflect a historical gradient in parasitism pressure. Finally, marked cuckoo egg polymorphisms are unlikely to evolve in these systems unless the hosts evolve even more exquisite egg recognition capabilities than currently possessed
    corecore