59 research outputs found

    Image Slicer Performances from a Demonstrator for the SNAP/JDEM Mission - Part I: Wavelength Accuracy

    Full text link
    A well-adapted visible and infrared spectrograph has been developed for the SNAP (SuperNova/Acceleration Probe) experiment proposed for JDEM. The instrument should have a high sensitivity to see faint supernovae but also a good redshift determination better than 0.003(1+z) and a precise spectrophotometry (2%). An instrument based on an integral field method with the powerful concept of imager slicing has been designed. A large prototyping effort has been performed in France which validates the concept. In particular a demonstrator reproducing the full optical configuration has been built and tested to prove the optical performances both in the visible and in the near infrared range. This paper is the first of two papers. The present paper focus on the wavelength measurement while the second one will present the spectrophotometric performances. We adress here the spectral accuracy expected both in the visible and in the near infrared range in such configuration and we demonstrate, in particular, that the image slicer enhances the instrumental performances in the spectral measurement precision by removing the slit effect. This work is supported in France by CNRS/INSU/IN2P3 and by the French spatial agency (CNES) and in US by the University of California.Comment: Submitted to PAS

    Bidirectional reflectance measurement of tungsten samples to assess reflection model in WEST tokamak

    Get PDF
    This paper presents the measurement of the bidirectional reflectance distribution function of tungsten (W) samples and the resulting reflection models in the nuclear fusion device WEST (tokamak). For this, an experimental gonio-spectrophotometer was developed to fully characterize the material’s optical and thermal-radiative properties of metallic samples with different roughnesses. Ray-tracing photonic simulation was then carried out to predict the photon behavior in a fully metallic environment as a function of reflectance measurement. Low emissivity (0.1 at 4 ÎŒm) and highly specular reflectance (fitting with a Gaussian distribution around the specular direction with a small width lower than 10°) are found for W samples. These measurements have been used as input for the photonic simulation, and the resulting synthetic image reproduced the reflection features well on the upper divertor, detected in WEST infrared experimental images

    Phosphorylated Dihydroceramides from Common Human Bacteria Are Recovered in Human Tissues

    Get PDF
    Novel phosphorylated dihydroceramide (PDHC) lipids produced by the periodontal pathogen Porphyromonas gingivalis include phosphoethanolamine (PE DHC) and phosphoglycerol dihydroceramides (PG DHC) lipids. These PDHC lipids mediate cellular effects through Toll-like receptor 2 (TLR2) including promotion of IL-6 secretion from dendritic cells and inhibition of osteoblast differentiation and function in vitro and in vivo. The PE DHC lipids also enhance (TLR2)-dependent murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. The unique non-mammalian structures of these lipids allows for their specific quantification in bacteria and human tissues using multiple reaction monitoring (MRM)-mass spectrometry (MS). Synthesis of these lipids by other common human bacteria and the presence of these lipids in human tissues have not yet been determined. We now report that synthesis of these lipids can be attributed to a small number of intestinal and oral organisms within the Bacteroides, Parabacteroides, Prevotella, Tannerella and Porphyromonas genera. Additionally, the PDHCs are not only present in gingival tissues, but are also present in human blood, vasculature tissues and brain. Finally, the distribution of these TLR2-activating lipids in human tissues varies with both the tissue site and disease status of the tissue suggesting a role for PDHCs in human disease

    Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice

    Get PDF
    BackgroundInfections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-ÎČ and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies

    MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness

    Get PDF
    Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio

    Impact of reflections on the divertor and first wall temperature measurements from the ITER infrared imaging system

    No full text
    Infrared (IR) images from the equatorial ITER wide angle viewing system are modeled for baseline plasma equilibrium, taking into account the low emissivity, the multiple reflections within the metallic vessel. To do so, a new modeling tool which couples photonic simulations with 3D field line tracing and thermal calculations has been developed. The effects of the parasitic reflections on the surface temperature measurement, Tsurf, on the divertor and first wall are investigated for two kinds of surface roughness (diffuse and specular). The contribution of reflected flux on the whole IR image is evaluated higher than 75% leading to an overestimation of Tsurf by 100% on first wall. For a peak temperature to 800 °C on outer vertical target, unknown emissivity leads to an underestimation of Tsurf by 40% (500 °C), with a risk to not detect a hot spot. Reflections cause an overestimation of Tsurf up to 85% in the colder private region which will impact the measurement of the divertor heat flux profile width
    • 

    corecore