A well-adapted visible and infrared spectrograph has been developed for the
SNAP (SuperNova/Acceleration Probe) experiment proposed for JDEM. The
instrument should have a high sensitivity to see faint supernovae but also a
good redshift determination better than 0.003(1+z) and a precise
spectrophotometry (2%). An instrument based on an integral field method with
the powerful concept of imager slicing has been designed. A large prototyping
effort has been performed in France which validates the concept. In particular
a demonstrator reproducing the full optical configuration has been built and
tested to prove the optical performances both in the visible and in the near
infrared range. This paper is the first of two papers. The present paper focus
on the wavelength measurement while the second one will present the
spectrophotometric performances. We adress here the spectral accuracy expected
both in the visible and in the near infrared range in such configuration and we
demonstrate, in particular, that the image slicer enhances the instrumental
performances in the spectral measurement precision by removing the slit effect.
This work is supported in France by CNRS/INSU/IN2P3 and by the French spatial
agency (CNES) and in US by the University of California.Comment: Submitted to PAS