1,337 research outputs found

    Development of the brazilian milking crossbred. I. Elite cows and bulls being tested

    Get PDF
    No Projeto Desenvolvimento do Mestiço Leiteiro Brasileiro executado por várias instituições e criadoras particulares, estão sendo conduzidos testes de progênie de touros mestiços de raças européias e zebuínas, escolhidos pela produção da mãe. Dispõe-se, atualmente, de quatorze rebanhos mestiços pua avaliação de vacas, sendo na maior parte Holandês: Guzerá, embora outras raças europeias e zebuínas também estejam representadas. Num total de 2.300 vacas avaliadas com 6.092 lactações, a produção média aos 305 dias foi de 2.549 kg de leite, corrigidas para idade e grau de sangue. Dos quatorze rebanhos, onze tiveram produção entre 2.000 e 3.000 kg, sendo que um rebanho teve média de 1.404 kg e os dois restantes acima de 3.000 kg. Visando-se testar dez touros por ano, foram selecionadas 40 vacas elites entre 699 existentes. A seleção foi baseada na capacidade estimada de produção real "C", obtida pelo produto C = by, sendo y a média das produções de cada vaca (corrigidas para ordem de parição e grau de sangue, expressadas como desvio das médias das companheiras contemporâneas) e b = nr/ { 1 + (n-1)r ,}, onde n = número de lactações e r = repetibilidade (0,5). Os valores de "C" foram padronizados através de i = (C - μC)σC, para comparar vacas de diferentes rebanhos. As 40 vacas selecionadas tiveram uma superioridade média C = + 836 kg sobre as contemporâneas, equivalente a i = 2,04 variando "i" de 1.52 a 2,87. A média de 20 vacas-reservas foi C = + 483 com um i = 1,38. No momento, o Projeto conta com 55 machos, sendo 24 adultos, quatorze de um a dois anos de idade e dezessete com menos de um ano.Crossbred bulls of european: zebu breeding, chosen on dam's milk production, are being progeny tested within Project Development of the brazilian milking crossbred, conducted by several institutions and private farmers. Presently, fourteen herds of crossbred cattle provide data for cow evaluation which are mostly of Holstein:Guzerá breeding, although other breeds are also represented. For 2300 cows evaluated, with 6092 lactations, average 305 days milk production was 2,549 kg (adjusted for parity and european blood percentage). Eleven out of the fourteen herds averaged 2,000 to 3,000 kg, one averaged 1.404 kg and the remaining two more than 3,000 kg. Fourty elite cows were selected out of 699 available, to the end of producing bulls to progeny test ten per year. Selection was based on estimated real productions ability "C", obtained by the product C = by, where y is the mean of the cow productions (ajusted for barity, european blood percentage and deviated from contemporaries average) and b = nr/ { 1 + (n-1)r , where n = number of lactations and r-repeatability (0.5). The C values were standardised,  i = (C - μC)σC, to compare cows from different herds. The 40 selected cows had a mean superiority C = + 836 kg over their contemporaries, equivalent to i = 2.04(i ranging from 1.52 to 2.87). The mean of twenty reserve cows was C =+483kg, with i=1.38. At present, the Project has a stud of 55 mates, 24 adults, 14 one to two years old and 17 less than one year

    Evaluation of Corpus Luteum Vascularization in Recipient Mares by Using Color Doppler Ultrasound

    Get PDF
    Background: Embryo transfer is one of the most commonly used reproductive biotechnique. The success of embryo transfer is also affected by the synchrony of estrus and ovulation between donor and recipient animals. In horse reproduction, ultrasonography has been used, among other purposes, to diagnose early pregnancy. However, only the color Doppler imaging mode makes it possible to evaluate the vascular architecture and the hemodynamic aspects of the vessels in several organs, especially the corpus luteum. The objective of this study was to evaluate, based on the color Doppler ultrasound, the corpus luteum vascularization and function from recipient mares at embryo transfer timing.Materials, Methods & Results: Mangalarga Machador mares from 5 to 10-year-old and a range of live weights of between 350 to 450 kg were used for this experiment, kept in pasture-based on mombaça grass (Panicum maximum) and were given ad libitum access to water and mineral supplementation. The animals (n = 15) were gynecologically examined and uterine consistency was evaluated by rectal palpation the same operator using an ultrasound system (SonoScape®) with a linear transducer, and operating frequency ranging from 5 to 10 Mhz. The uterine tone was classified between grades 1 and 4 and subjected to ovulation induction. The objective and subjective vascular perfusion of the corpus luteum was evaluated by color Doppler ultrasound on the day of embryo transfer and endometrium. The determination progesterone concentration on the day of the embryo transfer was performed by direct chemiluminescence assay. The arcsine (√P/100) transformation was applied to the percentage data, and the results were expressed as mean (.) ± standard error of the mean (SEM). Further, the assumptions of normality and homoscedasticity were verified, respectively, based on the Shapiro-Wilk and Lilliefors tests. Regarding the parametric and non-parametric variables, were applied, respectively, analysis of variance (ANOVA) followed by Tukey’s test, and the Kruskal-Wallis test followed by Dunn’s test. Pearson’s correlation coefficient was used to evaluate the relationship between the parameters. The statistical program SPSS 16.0 was used to perform the over-mentioned analyses, and a p-value 0.05).Discussion: Mares that later became pregnant showed a higher concentration of progesterone as an outcome of the higher vascularization in the corpus luteum. It can be supported by both the correlation between the progesterone concentration and the corpus luteum vascular perfusion, as well as by the higher values of the vascular perfusion in pregnant mares. Based on the results, it has been concluded that the color Doppler ultrasound evaluation is an accurate tool to determine the corpus luteum vascularization, whether considering the objective or subjective methods. Also, the vascular perfusion is the most efficient parameter to determine both the corpus luteum function and to predict the ability of the recipient mares to maintain pregnancy

    Impact of PGL-I Seropositivity on the Protective Effect of BCG Vaccination among Leprosy Contacts: A Cohort Study

    Get PDF
    Although leprosy has become a neglected disease, it is an important cause of disability, and 250,000 new cases are still diagnosed worldwide every year. The current study was carried out in Brazil, where almost 40,000 new cases of leprosy are diagnosed every year. The study targeted contacts of leprosy patients, who are at the highest risk of contracting the disease. We studied 2,135 contacts who were diagnosed at the Leprosy Outpatient Clinic at the Oswaldo Cruz Foundation in Rio de Janeiro, RJ, Brazil, between 1987 and 2007. The presence of antibodies against a specific Mycobacterium leprae antigen (PGL-I) at the first examination and BCG vaccination status were evaluated. PGL-I-positive contacts had a higher risk of developing leprosy than PGL-I-negative contacts. Among the former, vaccinated contacts were at higher risk than unvaccinated contacts. Our results indicate that contact examination combined with PGL-I testing and BCG vaccination appears to justify the targeting of PGL-I-positive individuals for enhanced surveillance. Furthermore, it is highly recommended that PGL-I-positive contacts and contacts with a high familial bacterial index (i.e., the sum of results from index and co-prevalent cases), regardless of serological response, should be monitored. This group could be considered as a target for chemoprophylaxis

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types
    corecore