65 research outputs found

    Higher clearance of micafungin in neonates compared with adults: role of age-dependent micafungin serum binding

    Get PDF
    Micafungin, a new echinocandin antifungal agent, has been widely used for the treatment of various fungal infections in human populations. Micafungin is predominantly cleared by biliary excretion and it binds extensively to plasma proteins (>99.5%). Micafungin body weight-adjusted clearance is higher in neonates than in adults, but the mechanisms underlying this difference are not understood. Previous work had revealed the roles of sinusoidal uptake (Na+-taurocholate co-transporting peptide, NTCP; organic anion transporting polypeptide, OATP) as well as canalicular efflux (bile salt export pump, BSEP; breast cancer resistance protein, BCRP) transporters in micafungin hepatobiliary elimination. In the present study, the relative protein expression of hepatic transporters was compared between liver homogenates from neonates and adults. Also, the extent of micafungin binding to serum from neonates and adults was measured in vitro. The results indicate that relative expression levels of NTCP, OATP1B1/3, BSEP, BCRP, and MRP3 were similar in neonates and in adults. However, micafungin fraction unbound (fu) in neonatal serum was about 8-fold higher than in adult serum (0.033 ± 0.012 versus 0.004 ± 0.001, respectively). While there was no evidence for different intrinsic hepatobiliary clearance of micafungin between neonates and adults, our data suggest that age-dependent serum protein binding of micafungin is responsible for its higher clearance in neonates compared to adults

    Evaluation of sesamum gum as an excipient in matrix tablets

    Get PDF
    In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated

    Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network

    Get PDF
    Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research

    Regional variability in peatland burning at mid-to high-latitudes during the Holocene

    Get PDF
    Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (∌9–6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires

    Clearance Prediction of HIV Protease Inhibitors in Man: Role of Hepatic Uptake

    Get PDF
    The aim of this work was to explore the contribution of the organic anion transporting polypeptide-1B (OATP1B) drug transporters in the hepatic clearance (Cl) of all marketed HIV protease inhibitors (PI) in humans. HIV PI uptake rates in OATP1B1/1B3-transfected Chinese hamster ovary cells were converted to uptake Cl values in human hepatocytes via a relative activity factor, which was determined by comparing uptake of known substrates between OATP1B1/3-transfected cells and human hepatocytes. Metabolic Cl values were determined in human liver microsomes. In vivo hepatic Cl values were calculated either by combining drug uptake and metabolism or based on one of these individual Cl processes and compared with published in vivo hepatic Cl values. Excellent in vitro-in vivo correlation (R(2) = 0.85) was observed when only uptake Cl values were used, but not when only metabolic Cl was used (R(2) = 0.40). The correlation did not improve when both processes were taken into account (R(2) = 0.85). PBPK models confirmed the remarkable sensitivity of predicted exposure to hepatic drug uptake, indicating a key role for OATP1B1/3 in hepatic disposition of several HIV PI in man. This may contribute to the interindividual variability in systemic and hepatic exposure to these drugs in the clinic

    Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers

    No full text
    Presently, the Caco-2 cell culture model is widely used during drug discovery and development as a predictive tool for the oral absorption of drug candidates. For transport experiments in the Caco-2 system, HBSS-like buffered salt solutions are commonly used, although different shortcomings have been associated with the use of these buffers. In this paper, we investigated the effect of using fasted state simulated intestinal fluid (FaSSIF) as potential biorelevant medium for the drug permeability estimation across Caco-2 monolayers. The transport characteristics of 19 model compounds were determined in the Caco-2 cell culture model in the presence of FaSSIF as compared to classic transport medium. A sigmoidal relation was obtained when the estimated P(app), s of the apical to basolateral transport were plotted versus the reported values of the fraction absorbed in man. Although no effect of FaSSIF as compared to classic transport medium (TM) was observed on the total predictability of the model, an impact was demonstrated (1) on the bi-directional transport of actively transported drugs (including talinolol, digoxin and doxorubicin), (2) on recovery and (3) on the solubility and permeability estimation of poorly water-soluble drugs. The observed differences may be attributed to a P-gp inhibitory effect of sodium taurocholate (NaTC), micellar encapsulation by the NaTC/lecithin mixed micelles and/or an increase of the solubility of lipophilic drugs. As the experimental conditions should mimic the physiological in vivo conditions, the use of FaSSIF as medium during Caco-2 experiments may improve the biorelevance of the model.status: publishe
    • 

    corecore