490 research outputs found

    Structure/function studies of dogfish α-crystallin, comparison with bovine α-crystallin

    Get PDF
    Purpose: α-Crystallin is the major protein of the mammalian lens where it contributes to the refractive properties needed for vision and possibly to the stability of the tissue. The aim of this study was to determine whether the properties of α-crystallin have changed during the course of evolution. Methods: Dogfish α-crystallin, which appeared over 420 million years ago, has been contrasted with bovine α-crystallin, which emerged around 160 million years later, by comparing their sizes, the microenvironments of their cysteine and tryptophan residues, their chaperone-like activities and the flexibility of their COOH-terminal extensions. Results: Dogfish α-crystallin consists of α A- and α B-polypeptides, in a 1: 5 ratio, and has a molecular mass of around 400 kDa. By contrast, the bovine protein is around 600-800 kDa in mass and has a 3: 1 subunit ratio. Cysteine residues in the proteins were equally accessible to reaction with 5,5'-dithiobis-(2-nitrobenzoic acid). Quenching of fluorescence with acrylamide indicated tryptophan residues in the two proteins were in similar environments. The chaperone activity of dogfish α-crystallin was comparable to that of bovine α-crystallin in preventing the heat-induced precipitation of β(L)-crystallin but the dogfish protein was three times more effective at preventing insulin precipitation after reduction at 37 degrees C. H-1 nuclear magnetic resonance spectroscopic studies showed that the last 17 amino acids of the dogfish α B polypeptide (V162-K178) have great conformational flexibility, are highly exposed to solvent and adopt little ordered conformation. This is comparable to, but slightly longer in length, than the COOH-terminal extension observed in mammalian alpha-crystallins. Conclusions: The structure and properties of α-crystallin have changed relatively little during the evolutionary period from the emergence of sharks and mammals. © US National Library of Medicine National Institutes of Healt

    Specific Sequences in the N-terminal Domain of Human Small Heat Shock Protein HSPB6 Dictate Preferential Heterooligomerization with the Orthologue HSPB1

    Get PDF
    Small heat-shock proteins (sHSPs) are a conserved group of molecular chaperones with important roles in cellular proteostasis. Although sHSPs are characterized by their small monomeric weight, they typically assemble into large polydisperse oligomers that vary in both size and shape but are principally composed of dimeric building blocks. These assemblies can include different sHSP orthologues, creating additional complexity that may affect chaperone activity. However, the structural and functional properties of such hetero-oligomers are poorly understood. We became interested in hetero-oligomer formation between human heat-shock protein family B (small) member 1 (HSPB1) and HSPB6, which are both highly expressed in skeletal muscle. When mixed in vitro, these two sHSPs form a polydisperse oligomer array composed solely of heterodimers, suggesting preferential association that is determined at the monomer level. Previously, we have shown that the sHSP N-terminal domains (NTDs), which have a high degree of intrinsic disorder, are essential for the biased formation. Here we employed iterative deletion mapping to elucidate how the NTD of HSPB6 influences its preferential association with HSPB1 and show that this region has multiple roles in this process. First, the highly conserved motif RLFDQXFG is necessary for subunit exchange among oligomers. Second, a site ∼20 residues downstream of this motif determines the size of the resultant hetero-oligomers. Third, a region unique to HSPB6 dictates the preferential formation of heterodimers. In conclusion, the disordered NTD of HSPB6 helps regulate the size and stability of hetero-oligomeric complexes, indicating that terminal sHSP regions define the assembly properties of these proteins

    Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient

    Get PDF
    We quantify the posterior surface distortions in optical coherence tomography (OCT) images of isolated crystalline lenses. The posterior radius of curvature and asphericity obtained from OCT images acquired with the beam incident first on the anterior, and then the posterior, surface were compared. The results were compared with predictions of a ray-tracing model which includes the index gradient. The results show that the error in the radius of curvature is within the measurement reproducibility and that it can be corrected by assuming a uniform refractive index. However, accurate asphericity values require a correction algorithm that takes into account the gradient

    The importance of parameter choice in modelling dynamics of the eye lens

    Get PDF
    The lens provides refractive power to the eye and is capable of altering ocular focus in response to visual demand. This capacity diminishes with age. Current biomedical technologies, which seek to design an implant lens capable of replicating the function of the biological lens, are unable as yet to provide such an implant with the requisite optical quality or ability to change the focussing power of the eye. This is because the mechanism of altering focus, termed accommodation, is not fully understood and seemingly conflicting theories require experimental support which is difficult to obtain from the living eye. This investigation presents finite element models of the eye lens based on data from human lenses aged 16 and 35 years that consider the influence of various modelling parameters, including material properties, a wide range of angles of force application and capsular thickness. Results from axisymmetric models show that the anterior and posterior zonules may have a greater impact on shape change than the equatorial zonule and that choice of capsular thickness values can influence the results from modelled simulations

    Bringing back the endangered bridled nail-tailed wallaby at Taunton National Park (Scientific) through effective predator control

    Get PDF
    Context: Feral cats (Felis catus), wild dogs/dingoes (Canis familiaris) and foxes (Vulpes vulpes) are predators of the endangered bridled nail-tailed wallaby (BNTW; Onychogalea frenata). Predator-proof fencing is advocated as a solution to ensure their conservation in the wild.Aims: The aims of this study were to determine whether predator control translated into a reduction in their activity, find evidence of cats preying on BNTWs and understand factors that influence changes in the BNTW population size living in an unfenced reserve, particularly focusing on the influence of cat and dog control and rainfall.Methods: An activity index, calculated using spoor on sand pads and images on remote cameras, was undertaken to monitor predator activity. The stomach contents of cats caught were examined to determine how commonly BNTWs feature as a prey item. The size of the BNTW population and annual survival of individuals was assessed through annual capture–mark–recapture (CMR) surveys and vehicle spotlight counts. Rainfall was measured at the study site and using data from the Bureau of Meteorology.Key results: The core BNTW population estimated by CMR data increased by 214% over 4 years (2013–2017), to 400 individuals in 2017, whereas spotlight data indicated that the population had increased by 262% over 8 years (2012–2020), to 1265 individuals in 2020. The percentage of small (≤3.5 kg) BNTWs caught increased substantially over the study period. There was no detectable difference in cat or dog activity following control and no correlation was found among predator activity, rainfall and BNTW survival. The remains of BNTWs were found in 20% of cats removed from the core BNTW area.Conclusions: The study confirmed that cats frequently ate BNTWs, and a combination of control methods is required to manage the threat, but there was no statistical support for a relationship between predator activity and BNTW survival.Implications: The study found that native species conservation in fox-free environments is possible without the need for predator-proof fences and the ongoing maintenance costs

    Optical Power of the Isolated Human Crystalline Lens

    Get PDF
    PURPOSE. To characterize the age dependence of isolated human crystalline lens power and quantify the contributions of the lens surfaces and refractive index gradient. METHODS. Experiments were performed on 100 eyes of 73 donors (average 2.8 Ϯ 1.6 days postmortem) with an age range of 6 to 94 years. Lens power was measured with a modified commercial lensmeter or with an optical system based on the Scheiner principle. The radius of curvature and asphericity of the isolated lens surfaces were measured by shadow photography. For each lens, the contributions of the surfaces and the refractive index gradient to the measured lens power were calculated by using optical ray-tracing software. The age dependency of these refractive powers was assessed. RESULTS. The total refractive power and surface refractive power both showed a biphasic age dependency. The total power decreased at a rate of Ϫ0.41 D/y between ages 6 and 58.1, and increased at a rate of 0.33D/y between ages 58.1 and 82. The surface contribution decreased at a rate of Ϫ0.13 D/y between ages 6 and 55.2 and increased at a rate of 0.04 D/y between ages 55.2 and 94. The relative contribution of the surfaces increased by 0.17% per year. The equivalent refractive index also showed a biphasic age dependency with a decrease at a rate of Ϫ3.9 ϫ 10 Ϫ4 per year from ages 6 to 60.4 followed by a plateau. CONCLUSIONS. The lens power decreases with age, due mainly to a decrease in the contribution of the gradient. The use of a constant equivalent refractive index value to calculate lens power with the lens maker formula will underestimate the power of young lenses and overestimate the power of older lenses. (Invest Ophthalmol Vis Sci. 2008;49:2541-2548) DOI: 10.1167/iovs.07-1385 T he optical power of the crystalline lens is determined by the surface curvatures, the refractive index differences at the aqueous lens and lens vitreous interfaces, and the refractive index gradient distribution within the lens. 1 Studying the optical properties of the lens (i.e., optical power, refractive index distribution, and the surface refractive contributions) in vivo is difficult because of the position of the lens behind the cornea and pupil, as well as the distortions of the posterior lens surface caused by the lens refractive index gradient. Two approaches have been used to measure the lens power in vivo. In the first approach the curvatures of the lens surface and lens thickness are measured by phakometry and ultrasonic or optical biometry. The lens power is then calculated assuming an equivalent uniform refractive index (typically, ϳ1.42). 2,3 In the second approach, the lens power is calculated from measurements of axial eye length, anterior chamber depth, corneal power, and refractive state of the eye. These parameters are input into an eye model to calculate the power required for the lens to produce an optical system that matches the measurements. 3-6 Both techniques derive the lens power from measurements of other ocular parameters. Even though recent studies have cross-validated in vivo lens biometry techniques 9 -15 A comparison of in vivo -21 The isolated lens power has been shown to decrease with age
    corecore