137 research outputs found

    The Effects of Physical Exercise on Salivary microRNA Levels

    Get PDF
    Diagnosing concussions provides challenges for healthcare professionals due to current diagnostic protocols utilizing subjective input from patients. Recent studies have shown relationships between specific salivary microRNA levels and concussions, but it is unknown if this is due to concussive forces or physical exertion. Analysis of this distinction may contribute to further confirming the relationship of concussions and microRNA, improving techniques for objective assessments of concussion. Objective: To measure the effects of physical exertion through exercise on specific salivary microRNA. Methods: Twenty non-intercollegiate athletes (10:M, 10:F) were recruited for this case series. After ensuring the participants received a minimum of 6-hours of sleep the previous night, a baseline salivary sample was taken with the p-157: Nucleic acid stabilization kit (DNA Genotek; Ottawa, Canada). Participants completed a graded exercise test on a treadmill following the Bruce Protocol (VO2-Max). Participants began walking and investigators gradually increased the intensity at regular 3-minute intervals. Intensity increases were achieved by increasing both the speed and incline of the treadmill until maximal physical exhaustion was achieved. Physiological measures were measured to ensure safety. Immediately following the graded exercise test, a second salivary sample was collected. All samples were sent to Quadrant Biosciences for analysis and NextGen sequencing. Upon receiving normalized data from Quadrant Biosciences (Syracuse, NY), investigators performed paired t-tests (α Conclusions: The findings of this study reinforce the relationship between 6 salivary microRNA and concussions. The body of evidence of the aforementioned salivary microRNA’s relationship to concussions is strengthened as no significant differences were found, indicating the concentration of the 6 salivary microRNA are not affected by exercise.https://digitalcommons.odu.edu/gradposters2020_healthsciences/1001/thumbnail.jp

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Disruption of Dnmt1/PCNA/UHRF1 Interactions Promotes Tumorigenesis from Human and Mice Glial Cells

    Get PDF
    Global DNA hypomethylation is a hallmark of cancer cells, but its molecular mechanisms have not been elucidated. Here, we show that the disruption of Dnmt1/PCNA/UHRF1 interactions promotes a global DNA hypomethylation in human gliomas. We then demonstrate that the Dnmt1 phosphorylations by Akt and/or PKC abrogate the interactions of Dnmt1 with PCNA and UHRF1 in cellular and acelluar studies including mass spectrometric analyses and the use of primary cultured patient-derived glioma. By using methylated DNA immunoprecipitation, methylation and CGH arrays, we show that global DNA hypomethylation is associated with genes hypomethylation, hypomethylation of DNA repeat element and chromosomal instability. Our results reveal that the disruption of Dnmt1/PCNA/UHRF1 interactions acts as an oncogenic event and that one of its signatures (i.e. the low level of mMTase activity) is a molecular biomarker associated with a poor prognosis in GBM patients. We identify the genetic and epigenetic alterations which collectively promote the acquisition of tumor/glioma traits by human astrocytes and glial progenitor cells as that promoting high proliferation and apoptosis evasion

    Statistical Inference of In Vivo Properties of Human DNA Methyltransferases from Double-Stranded Methylation Patterns

    Get PDF
    DNA methyltransferases establish methylation patterns in cells and transmit these patterns over cell generations, thereby influencing each cell's epigenetic states. Three primary DNA methyltransferases have been identified in mammals: DNMT1, DNMT3A and DNMT3B. Extensive in vitro studies have investigated key properties of these enzymes, namely their substrate specificity and processivity. Here we study these properties in vivo, by applying novel statistical analysis methods to double-stranded DNA methylation patterns collected using hairpin-bisulfite PCR. Our analysis fits a novel Hidden Markov Model (HMM) to the observed data, allowing for potential bisulfite conversion errors, and yields statistical estimates of parameters that quantify enzyme processivity and substrate specificity. We apply this model to methylation patterns established in vivo at three loci in humans: two densely methylated inactive X (Xi)-linked loci ( and ), and an autosomal locus (), where methylation densities are tissue-specific but moderate. We find strong evidence for a high level of processivity of DNMT1 at and , with the mean association tract length being a few hundred base pairs. Regardless of tissue types, methylation patterns at are dominated by DNMT1 maintenance events, similar to the two Xi-linked loci, but are insufficiently informative regarding processivity to draw any conclusions about processivity at that locus. At all three loci we find that DNMT1 shows a strong preference for adding methyl groups to hemi-methylated CpG sites over unmethylated sites. The data at all three loci also suggest low (possibly 0) association of the de novo methyltransferases, the DNMT3s, and are consequently uninformative about processivity or preference of these enzymes. We also extend our HMM to reanalyze published data on mouse DNMT1 activities in vitro. The results suggest shorter association tracts (and hence weaker processivity), and much longer non-association tracts than human DNMT1 in vivo

    Prevalence of latent tuberculosis infection and predictive factors in an urban informal settlement in Johannesburg, South Africa: a cross-sectional study

    Get PDF
    Abstract Background South Africa has one of the highest burdens of latent tuberculosis infection (LTBI) in high-risk populations such as young children, adolescents, household contacts of TB cases, people living with HIV, gold miners and health care workers, but little is known about the burden of LTBI in its general population. Methods Using a community-based survey with random sampling, we examined the burden of LTBI in an urban township of Johannesburg and investigated factors associated with LTBI. The outcome of LTBI was based on TST positivity, with a TST considered positive if the induration was ≥5 mm in people living with HIV or ≥10 mm in those with unknown or HIV negative status. We used bivariate and multivariable logistic regression to identify factors associated with LTBI Results The overall prevalence of LTBI was 34.3 (95 % CI 30.0, 38.8 %), the annual risk of infection among children age 0–14 years was 3.1 % (95 % CI 2.1, 5.2). LTBI was not associated with HIV status. In multivariable logistic regression analysis, LTBI was associated with age (OR = 1.03 for every year increase in age, 95 % CI = 1.01–1.05), male gender (OR = 2.70, 95 % CI = 1.55–4.70), marital status (OR = 2.00, 95 % CI = 1.31–3.54), and higher socio-economic status (OR = 2.11, 95 % CI = 1.04–4.31). Conclusions The prevalence of LTBI and the annual risk of infection with M. tuberculosis is high in urban populations, especially in men, but independent of HIV infection status. This study suggests that LTBI may be associated with higher SES, in contrast to the well-established association between TB disease and poverty

    A connectome and analysis of the adult Drosophila central brain.

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore