52 research outputs found

    Formula for proton-nucleus reaction cross section at intermediate energies and its application

    Full text link
    We construct a formula for proton-nucleus total reaction cross section as a function of the mass and neutron excess of the target nucleus and the proton incident energy. We deduce the dependence of the cross section on the mass number and the proton incident energy from a simple argument involving the proton optical depth within the framework of a black sphere approximation of nuclei, while we describe the neutron excess dependence by introducing the density derivative of the symmetry energy, L, on the basis of a radius formula constructed from macroscopic nuclear models. We find that the cross section formula can reproduce the energy dependence of the cross section measured for stable nuclei without introducing any adjustable energy dependent parameter. We finally discuss whether or not the reaction cross section is affected by an extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference

    The calculation of total reaction cross sections induced by intermediate energy α\alpha-particles with BUU Model

    Full text link
    The Boltzmann-Uehling-Uhlenbeck (BUU) Model, which includes the Fermi motion, the mean field, individual nucleon-nucleon (N-N) interactions and the Pauli blocking effect etc., is used to calculate the total reaction cross section σR\sigma_R induced by α\alpha-particles on different targets in the incident energy range from 17.4 to 48.1 MeV/u. The calculation result can reproduce the experimental data well. The nucleus-nucleus interaction radius parameter r0r_0 was extracted from experimental σR\sigma_R. It is found that r0r_0 becomes constant with increasing the mass number of target.Comment: 4 pages, 4 fig

    Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies

    Get PDF
    sem informaçãoThe epilepsies affect around 65 million people worldwide and have a substantial missing heritability component. We report a genome-wide mega-analysis involving 15,212 individuals with epilepsy and 29,677 controls, which reveals 16 genome-wide significant91sem informaçãosem informaçãosem informaçã

    Testing association of rare genetic variants with resistance to three common antiseizure medications

    Get PDF
    OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance

    Comparative effectiveness of antiepileptic drugs in juvenile myoclonic epilepsy

    Get PDF
    Objective: To study the effectiveness and tolerability of antiepileptic drugs (AEDs) commonly used in juvenile myoclonic epilepsy (JME). Methods: People with JME were identified from a large database of individuals with epilepsy, which includes detailed retrospective information on AED use. We assessed secular changes in AED use and calculated rates of response (12-month seizure freedom) and adverse drug reactions (ADRs) for the five most common AEDs. Retention was modeled with a Cox proportional hazards model. We compared valproate use between males and females. Results: We included 305 people with 688 AED trials of valproate, lamotrigine, levetiracetam, carbamazepine, and topiramate. Valproate and carbamazepine were most often prescribed as the first AED. The response rate to valproate was highest among the five AEDs (42.7%), and significantly higher than response rates for lamotrigine, carbamazepine, and topiramate; the difference to the response rate to levetiracetam (37.1%) was not significant. The rates of ADRs were highest for topiramate (45.5%) and valproate (37.5%). Commonest ADRs included weight change, lethargy, and tremor. In the Cox proportional hazards model, later start year (1.10 [1.08-1.13], P < 0.001) and female sex (1.41 [1.07-1.85], P = 0.02) were associated with shorter trial duration. Valproate was associated with the longest treatment duration; trials with carbamazepine and topiramate were significantly shorter (HR [CI]: 3.29 [2.15-5.02], P < 0.001 and 1.93 [1.31-2.86], P < 0.001). The relative frequency of valproate trials shows a decreasing trend since 2003 while there is an increasing trend for levetiracetam. Fewer females than males received valproate (76.2% vs 92.6%, P = 0.001). Significance: In people with JME, valproate is an effective AED; levetiracetam emerged as an alternative. Valproate is now contraindicated in women of childbearing potential without special precautions. With appropriate selection and safeguards in place, valproate should remain available as a therapy, including as an alternative for women of childbearing potential whose seizures are resistant to other treatments

    Rare coding variants in genes encoding GABA_A receptors in genetic generalised epilepsies: an exome-based case-control study

    Get PDF
    BACKGROUND: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. METHODS: For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. FINDINGS: Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41-4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05-2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02-2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. INTERPRETATION: Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. FUNDING: EuroEPINOMICS (European Science Foundation through national funding organisations), Epicure and EpiPGX (Sixth Framework Programme and Seventh Framework Programme of the European Commission), Research Unit FOR2715 (German Research Foundation and Luxembourg National Research Fund)

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Comparative effectiveness of antiepileptic drugs in patients with mesial temporal lobe epilepsy with hippocampal sclerosis

    Get PDF
    OBJECTIVE: Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a common epilepsy syndrome that is often poorly controlled by antiepileptic drug (AED) treatment. Comparative AED effectiveness studies in this condition are lacking. We report retention, efficacy, and tolerability in a cohort of patients with MTLE-HS. METHODS: Clinical data were collected from a European database of patients with epilepsy. We estimated retention, 12-month seizure freedom, and adverse drug reaction (ADR) rates for the 10 most commonly used AEDs in patients with MTLE-HS. RESULTS: Seven hundred sixty-seven patients with a total of 3,249 AED trials were included. The highest 12-month retention rates were observed with carbamazepine (85.9%), valproate (85%), and clobazam (79%). Twelve-month seizure freedom rates varied from 1.2% for gabapentin and vigabatrin to 11% for carbamazepine. Response rates were highest for AEDs that were prescribed as initial treatment and lowest for AEDs that were used in a third or higher instance. ADRs were reported in 47.6% of patients, with the highest rates observed with oxcarbazepine (35.7%), topiramate (30.9%), and pregabalin (27.4%), and the lowest rates with clobazam (6.5%), gabapentin (8.9%), and lamotrigine (16.6%). The most commonly reported ADRs were lethargy and drowsiness, dizziness, vertigo and ataxia, and blurred vision and diplopia. SIGNIFICANCE: Our results did not demonstrate any clear advantage of newer versus older AEDs. Our results provide useful insights into AED retention, efficacy, and ADR rates in patients with MTLE-HS

    Rare coding variants in genes encoding GABA(A) receptors in genetic generalised epilepsies : an exome-based case-control study

    Get PDF
    Background Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. Methods For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABA(A) receptors and was compared to the respective GABA(A) receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. Findings Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABA(A) receptors in cases (odds ratio [OR] 2.40 [95% CI 1.41-4.10]; p(Nonsyn)=0.0014, adjusted p(Nonsyn)=0.019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1.46 [95% CI 1.05-2.03]; p(Nonsyn)=0.0081, adjusted p(Nonsyn)=0.016). Comparison of genes encoding GABA(A) receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABA(A) receptor genes in cases compared with controls (OR 1.46 [95% CI 1.02-2.08]; p(Nonsyn)=0.013, adjusted p(Nonsyn)=0.027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. Interpretation Functionally relevant variants in genes encoding GABA(A) receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Association of ultra-rare coding variants with genetic generalized epilepsy: A case\u2013control whole exome sequencing study

    Get PDF
    Objective: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. Methods: We performed a case\u2013control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding \u3b3-aminobutyric acid type A [GABAA] receptors, 113 genes representing the GABAergic pathway). Results: GABRG2 was associated with GGE (p = 1.8  7 10 125), approaching study-wide significance in familial GGE (p = 3.0  7 10 126), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9\u20137.8, false discovery rate [FDR]-adjusted p =.0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3\u20136.7, FDR-adjusted p =.022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3\u20132.5, FDR-adjusted p =.0024) but not with sporadic GGE (OR = 1.3, 95% CI =.9\u20131.9, FDR-adjusted p =.19). Significance: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE
    corecore