14 research outputs found

    Shifting baselines to thresholds:Reframing exploitation in the marine environment

    Get PDF
    Current research on anthropogenic impacts on marine ecosystems often relies on the concept of a “baseline,” which aims to describe ecosystems prior to human contact. Recent research is increasingly showing that humans have been involved in marine ecosystems for much longer than previously understood. We propose a theoretical framework oriented around a system of “thresholds” referring to system-wide changes in human culture, ecosystem dynamics, and molecular evolution. The concept of the threshold allows conceptual space to account for the fluid nature of ecosystems throughout time while providing a critical framework for understanding drivers of ecosystem change. We highlight practical research approaches for exploring thresholds in the past and provide key insights for future adaptation to a changing world. To ensure ecological and societal goals for the future are met, it is critical that research efforts are contextualized into a framework that incorporates human society as integral to ecology and evolution

    Population interconnectivity over the past 120,000 years explains distribution and diversity of Central African hunter-gatherers

    Full text link
    The evolutionary history of African hunter-gatherers holds key insights into modern human diversity. Here, we combine ethnographic and genetic data on Central African hunter-gatherers (CAHG) to show that their current distribution and density are explained by ecology rather than by a displacement to marginal habitats due to recent farming expansions, as commonly assumed. We also estimate the range of hunter-gatherer presence across Central Africa over the past 120,000 years using paleoclimatic reconstructions, which were statistically validated by our newly compiled dataset of dated archaeological sites. Finally, we show that genomic estimates of divergence times between CAHG groups match our ecological estimates of periods favoring population splits, and that recoveries of connectivity would have facilitated subsequent gene flow. Our results reveal that CAHG stem from a deep history of partially connected populations. This form of sociality allowed the coexistence of relatively large effective population sizes and local differentiation, with important implications for the evolution of genetic and cultural diversity in Homo sapiens. Significance We combined ethnographic, archaeological, genetic, and paleoclimatic data to model the dynamics of Central African hunter-gatherer populations over the past 120,000 years. We show, against common assumptions, that their distribution and density are explained by changing environments rather than by a displacement following recent farming expansions, and that they have maintained large population sizes and genetic diversity, despite fluctuations in niche availability. Our results provide insights into the evolution of genetic and cultural diversity in Homo sapiens

    The biospheric emergency calls for scientists to change tactics

    Get PDF
    Our current economic and political structures have an increasingly devastating impact on the Earth’s climate and ecosystems: we are facing a biospheric emergency, with catastrophic consequences for both humans and the natural world on which we depend. Life scientists – including biologists, medical scientists, psychologists and public health experts – have had a crucial role in documenting the impacts of this emergency, but they have failed to drive governments to take action in order to prevent the situation from getting worse. Here we, as members of the movement Scientist Rebellion, call on life scientists to re-embrace advocacy and activism – which were once hallmarks of academia – in order to highlight the urgency and necessity of systemic change across our societies. We particularly emphasise the need for scientists to engage in nonviolent civil resistance, a form of public engagement which has proven to be highly effective in social struggles throughout history

    Ancient DNA evidence for the ecological globalization of cod fishing in medieval and post-medieval Europe

    Full text link
    Understanding the historical emergence and growth of long-range fisheries can provide fundamental insights into the timing of ecological impacts and the development of coastal communities during the last millennium. Whole-genome sequencing approaches can improve such understanding by determining the origin of archaeological fish specimens that may have been obtained from historic trade or distant water. Here, we used genome-wide data to individually infer the biological source of 37 ancient Atlantic cod specimens (ca 1050-1950 CE) from England and Spain. Our findings provide novel genetic evidence that eleventh- to twelfth-century specimens from London were predominantly obtained from nearby populations, while thirteenth- to fourteenth-century specimens were derived from distant sources. Our results further suggest that Icelandic cod was indeed exported to London earlier than previously reported. Our observations confirm the chronology and geography of the trans-Atlantic cod trade from Newfoundland to Spain starting by the early sixteenth century. Our findings demonstrate the utility of whole-genome sequencing and ancient DNA approaches to describe the globalization of marine fisheries and increase our understanding regarding the extent of the North Atlantic fish trade and long-range fisheries in medieval and early modern time

    Ancient DNA evidence for the ecological globalization of cod fishing in medieval and post-medieval Europe

    Get PDF
    Understanding the historical emergence and growth of long-range fisheries can provide fundamental insights into the timing of ecological impacts and the development of coastal communities during the last millennium. Whole-genome sequencing approaches can improve such understanding by determining the origin of archaeological fish specimens that may have been obtained from historic trade or distant water. Here, we used genome-wide data to individually infer the biological source of 37 ancient Atlantic cod specimens (ca 1050-1950 CE) from England and Spain. Our findings provide novel genetic evidence that eleventh- to twelfth-century specimens from London were predominantly obtained from nearby populations, while thirteenth- to fourteenth-century specimens were derived from distant sources. Our results further suggest that Icelandic cod was indeed exported to London earlier than previously reported. Our observations confirm the chronology and geography of the trans-Atlantic cod trade from Newfoundland to Spain starting by the early sixteenth century. Our findings demonstrate the utility of whole-genome sequencing and ancient DNA approaches to describe the globalization of marine fisheries and increase our understanding regarding the extent of the North Atlantic fish trade and long-range fisheries in medieval and early modern times

    Population interconnectivity over the past 120,000 years explains distribution and diversity of Central African hunter-gatherers.

    No full text
    The evolutionary history of African hunter-gatherers holds key insights into modern human diversity. Here, we combine ethnographic and genetic data on Central African hunter-gatherers (CAHG) to show that their current distribution and density are explained by ecology rather than by a displacement to marginal habitats due to recent farming expansions, as commonly assumed. We also estimate the range of hunter-gatherer presence across Central Africa over the past 120,000 years using paleoclimatic reconstructions, which were statistically validated by our newly compiled dataset of dated archaeological sites. Finally, we show that genomic estimates of divergence times between CAHG groups match our ecological estimates of periods favoring population splits, and that recoveries of connectivity would have facilitated subsequent gene flow. Our results reveal that CAHG stem from a deep history of partially connected populations. This form of sociality allowed the coexistence of relatively large effective population sizes and local differentiation, with important implications for the evolution of genetic and cultural diversity in Homo sapiens

    Ancient DNA sequence quality is independent of fish bone weight

    No full text
    The field of ancient DNA (aDNA) typically uses between 50 and 200 mg of minimum input weight of bone material for the extraction of DNA from archaeological remains. While laboratory and analysis techniques have focused on improved efficiency of extracting useable sequence data from older and poorer quality remains, bone material input requirements have rarely been critically evaluated. Here, we present the aDNA analysis of 121 size-constrained Atlantic herring remains – weighing between <10 and 70 mg – that were individually sequenced to explore the capacity of successful aDNA retrieval from small archaeological remains. We statistically evaluate the relationship between bone weight and several response variables, including library success, endogenous DNA content, and library complexity, i.e., the number of unique molecules that are obtained. Remarkably, we find no relationship between bone weight and library success, levels of endogenous DNA, or library complexity. Our results imply that – at least in the case of fish bone – even minute bones can yield positive results and that the presumed minimum sample size required should be re-evaluated. Archaeological site, instead of bone size, is the primary driver of DNA sequence quality. Our work expands the number of specimens considered suitable for aDNA analyses, and therefore facilitates efforts to minimize the destructive impact of aDNA research and mediate some of the ethical concerns surrounding destructive analysis.publishedVersio

    Historical Mitogenomic Diversity and Population Structuring of Southern Hemisphere Fin Whales

    Get PDF
    Fin whales Balaenoptera physalus were hunted unsustainably across the globe in the 19th and 20th centuries, leading to vast reductions in population size. Whaling catch records indicate the importance of the Southern Ocean for this species; approximately 730,000 fin whales were harvested during the 20th century in the Southern Hemisphere (SH) alone, 94% of which were at high latitudes. Genetic samples from contemporary whales can provide a window to past population size changes, but the challenges of sampling in remote Antarctic waters limit the availability of data. Here, we take advantage of historical samples in the form of bones and baleen available from ex-whaling stations and museums to assess the pre-whaling diversity of this once abundant species. We sequenced 27 historical mitogenomes and 50 historical mitochondrial control region sequences of fin whales to gain insight into the population structure and genetic diversity of Southern Hemisphere fin whales (SHFWs) before and after the whaling. Our data, both independently and when combined with mitogenomes from the literature, suggest SHFWs are highly diverse and may represent a single panmictic population that is genetically differentiated from Northern Hemisphere populations. These are the first historic mitogenomes available for SHFWs, providing a unique time series of genetic data for this species
    corecore