7 research outputs found

    Modeling the Total Allowable Area for Coastal Reclamation : a case study of Xiamen, China

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Ocean & Coastal Management 76 (2013):38-44, doi:10.1016/j.ocecoaman.2013.02.015.This paper presents an analytical framework to estimate the Total Allowable Area for Coastal Reclamation (TAACR) to provide scientific support for the implementation of a coastal reclamation restriction mechanism. The logic of the framework is to maximize the net benefits of coastal reclamation subject to a set of constraints. Various benefits and costs, including the ecological and environmental costs of coastal reclamation, are systematically quantified in the framework. Model simulations are developed using data from Tongan Bay of Xiamen. The results suggest that the TAACR in Tongan Bay is 5.67 km2, and the area of the Bay should be maintained at least at 87.52 km2.The study was funded by the National Oceanic Public Welfare Projects (No. 201105006) and the Fujian Natural Science Foundation (No. 2010J01360

    Multiscale variability in the Balearic Sea: an altimetric perspective

    Get PDF
    The present-day availability of an 18 year record of merged Mediterranean Sea sea level anomaly (SLA) data enables a contemporary description of long-term mesoscale activity in the Balearic Sea. SLA data from satellite altimetry are used to study the variability of sea level and surface geostrophic circulation at different spatial and temporal scales within this complex and relatively understudied region in the western Mediterranean (WMED). We find that the mean Northern Current along the Iberian slope is strongest in autumn, although higher variability in winter leads to stronger peaks in kinetic energy. The Balearic Current, which flows along the northern slopes of the Balearic islands, also has its maximum expression in autumn. Across the two Balearic channels (Ibiza and Mallorca), key locations that partly regulate meridional exchange in the WMED, observed seasonal variability in geostrophic velocity anomalies conforms rather well to prior descriptions, suggesting cautious confidence in the use of the Mediterranean merged altimeter product in nearshore regions. Circulation through the channels is maximum in winter. The channel data support the hypothesis that the channel circulation may be hindered by the intermittent presence of the Western Intermediate Water mass, which sometimes forms in winter in the Gulf of Lions. This is the first time that an analysis of variability in the Balearic channels has been performed using altimetric data.Evan Mason is supported by a Spanish government JAE-Doc grant (CSIC), cofinanced by FSE. This work has been partially funded by the project MyOCean-2 EU FP7Peer Reviewe

    Offshore oil spill response practices and emerging challenges

    No full text
    corecore