432 research outputs found

    Modeling of magnetic optic for the short pulse mode operation of Energy Recovery Linac based light sources

    Get PDF
    Das Forschungsfeld der Synchrotronstrahlungsquellen hat sich in den letzen Jahren entscheidend weiterentwickelt. Alle Zukunftsideen, unabhängig von ihrer Komplexität, haben dennoch eines gemeinsam: die Erzeugung kurzer Pulse. Die Naturwissenschaften haben die Spitzenbrillanz, die mit Hilfe kürzester Pulse produziert werden kann, als neues Schlüsselwerkzeug entdeckt. Die Nutzergemeinschaft verlangt nicht mehr nur ein statisches Bild, sondern vielmehr eine Reihe von bewegten Aufnahmen atomarer Substrukturen und den dazugehöringen Prozessen. Existierende dritte Generation Synchrotronstrahlungsquellen werden an die neuen Herausforderungen angepasst: Verbesserungen an der Magnet-Optik sowie der Einbau modernster Beschleunigertechnologie ermöglichen die Erzeugung kürzester Pulse mit höchster Brillanz für zeitaufgelöste Experimente. Ein möglicher Kandidat für die Lichtquelle der nächsten Generation ist ein Linear-Beschleuniger mit Energierückgewinnung. Durch die Verwendung langer Beschleunigungsstrukturen kann es, selbst bei hohen Energien, nicht zur Ausbildung des Emittanzgleichgewichts wie in Speicherringen kommen. Durch die Verwendung Impulsabhängiger-Umlaufbahnen und der Rückgewinnung der Strahlenergie ist es mit `Energy Recovery Linac'' (ERL)-basierten Quellen energieeffizient möglich, hochenergetische Elektronen-Pulse im Femtosekundenbereich zu erzeugen. Die longitudinale Elekronstrahldynamik solcher ERLs ist eines der Hauptthemen dieser Arbeit. Umfangreiche Simulationen über die gesamte Maschine wurden im Rahmen der `Femto-Science Factory'' Lichtquellen Studie durchgeführt. Die Begrenzungen des Kurzpulsmodus Betriebes wurden untersucht und mit den Erwartungen verglichen. Besondere Aufmerksamkeit lag dabei auf den 6D Elektronenstrahleigenschaften, insbesondere auf der Vermeidung von Strahlaufweitungen, die mit der Erzeugung von Ultra-Kurzpulsen einhergehen können.Synchrotron light sources are entering a new era. No matter how elaborate, all the next generation proposals share a common necessity; the production of ultra-short electron bunches. There is an evolution in the field of science under investigation using the high peak brilliance generated from such bunches. The user community is demanding not just pictures but videos of atomic substructures and the processes that define them. Existing 3rd generation facilities are modifying their magnetic lattices and upgrading the acceleration schemes in order to keep up with this trend of generating short pulses with ultimate brilliance for time resolved experiments. A possible candidate for the next generation light source is one based on ERL technology. Using long linacs to accelerate to high energies overcomes the present limitation of emittance equilibrium in storage rings. By implementing independent arcs for acceleration and deceleration while recuperating the beams energy, ERL based sources are theoretically capable of efficiently producing high energy femtosecond long bunch lengths. The study of the longitudinal motion of the beam through single pass magnetic optic in combination with linacs is the main topic of this thesis. Dedicated start-to-end simulations in the framework of the Femto-Science Factory large scale light source are undertaken. The expectations and restrictions on the short pulse mode (SPM) operation are comprehensively examined in this work. Particular attention is given to the 6D electron beam properties and with it the beam degradation caused by the production of ultra-short bunches

    Building Their Stories: Electronic Case Studies of Struggling Readers

    Get PDF
    Ten university graduate students created electronic case studies describing the learning of struggling readers as a part of this study designed to yield insights about literacy education and the efficacy of electronic case study development. A variety of data, analyzed through a qualitative content analysis, revealed understandings regarding participants\u27 perceptions about themselves as learners, ideas about their influences on students, and revelations about literacy instruction. A final theme revealed that, as participants reflected upon their own learning; they also voiced a commitment to literacy teaching that went beyond their personal classroom settings. Further, researchers gained insights about how to better prepare literacy educators, as well as how to more effectively integrate technology into the case study process

    Examing the Forces That Guide Teaching Decisions

    Get PDF
    This study of two successful first grade teachers examines the forces that guide their instructional decisions. Findings reveal the complexities of forces that influence the moment-to-moment decisions made by these teachers. Teachers repeatedly attempted to balance their desires to be student-centered while addressing state standards and implementing their schools’ adopted curricula, with varying levels of success. The teachers’ professional knowledge was the determining factor in that success. Levels of professional development and the professional learning communities of these two teachers and the contexts in which they were operating influenced their attention to certain forces. Findings from this study indicate that building teachers’ professional knowledge through coaching and long-term professional development can improve teacher decision making

    Effects of synchronous music on treadmill running among elite triathletes

    Get PDF
    This is the post-print version of the final paper published in Journal of Science and Medicine in Sport. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Objectives: Music can provide ergogenic, psychological, and psychophysical benefits during physical activity, especially when movements are performed synchronously with music. The present study developed the train of research on synchronous music and extended it to elite athletes. Design: Repeated-measures laboratory experiment. Method: Elite triathletes (n = 11) ran in time to self-selected motivational music, a neutral equivalent and a no-music control during submaximal and exhaustive treadmill running. Measured variables were time-to-exhaustion, mood responses, feeling states, RPE, blood lactate concentration, oxygen consumption and running economy. Results: Time-to-exhaustion was 18.1% and 19.7% longer, respectively, when running in time to motivational and neutral music, compared to no music. Mood responses and feeling states were more positive with motivational music compared to either neutral music or no music. RPE was lowest for neutral music and highest for the no-music control. Blood lactate concentrations were lowest for motivational music. Oxygen consumption was lower with music by 1.0%–2.7%. Both music conditions were associated with better running economy than the no-music control. Conclusions: Although neutral music did not produce the same level of psychological benefits as motivational music, it proved equally beneficial in terms of time-to-exhaustion and oxygen consumption. In functional terms, the motivational qualities of music may be less important than the prominence of its beat and the degree to which participants are able to synchronise their movements to its tempo. Music provided ergogenic, psychological and physiological benefits in a laboratory study and its judicious use during triathlon training should be considered.QAS Centre of Excellence for Applied Sport Science Researc

    Bridging the Gap Between Researchers and Wider Audiences: Navigating A Community Literacy Collaboration in Real-Time

    Get PDF
    While campus-community partnerships are common, such engaged scholarship efforts often lead university researchers to community-centered presentations and publications; however, this type of scholarship and especially the venues in which it is often disseminated are of questionable value within the academy’s tenure and promotion process. Three literacy scholars who were invited to study the impact of community-wide Imagination Library implementation share challenges they encountered related to collaboration, communication, and dissemination of findings during the first two years of a five-year early literacy community partnership. Selected outcomes and implications for other community-engaged scholars include (a) investing in true multi-directional consistent collaboration and communication and (b) leveraging user-friendly technology tools and platforms to archive and share project work. The authors call for continued efforts to communicate beyond the academy with the audiences targeted for ultimate impact and continued advocacy for valuing non-traditional publications within the academy

    Managing Mutual Information & Transfer Entropy In Synthetic Ecologies

    Get PDF
    In this paper we consider transfer entropy and mutual information in terms of their application in the emerging highly interconnected and dynamic synthetic ecologies underpinned by the Cyber. We consider existing models relating to the management of learning and change within organizations and as they may relate to mutual information (MI) and transfer entropy (TE) within socio and info/techno settings, based upon a Mech-Organic perspective. A premise of this paper is that change is costly and that it needs to be seen through a social as well as an info/techno lens. We identify potential improvements to existing models and applications applied to the management of change by considering alternative models and how they may be applied collaboratively within a learning organization

    Relation of vertebral deformities to bone density, structure, and strength.

    Get PDF
    Because they are not reliably discriminated by areal bone mineral density (aBMD) measurements, it is unclear whether minimal vertebral deformities represent early osteoporotic fractures. To address this, we compared 90 postmenopausal women with no deformity (controls) with 142 women with one or more semiquantitative grade 1 (mild) deformities and 51 women with any grade 2-3 (moderate/severe) deformities. aBMD was measured by dual-energy X-ray absorptiometry (DXA), lumbar spine volumetric bone mineral density (vBMD) and geometry by quantitative computed tomography (QCT), bone microstructure by high-resolution peripheral QCT at the radius (HRpQCT), and vertebral compressive strength and load-to-strength ratio by finite-element analysis (FEA) of lumbar spine QCT images. Compared with controls, women with grade 1 deformities had significantly worse values for many bone density, structure, and strength parameters, although deficits all were much worse for the women with grade 2-3 deformities. Likewise, these skeletal parameters were more strongly associated with moderate to severe than with mild deformities by age-adjusted logistic regression. Nonetheless, grade 1 vertebral deformities were significantly associated with four of the five main variable categories assessed: bone density (lumbar spine vBMD), bone geometry (vertebral apparent cortical thickness), bone strength (overall vertebral compressive strength by FEA), and load-to-strength ratio (45-degree forward bending Ă· vertebral compressive strength). Thus significantly impaired bone density, structure, and strength compared with controls indicate that many grade 1 deformities do represent early osteoporotic fractures, with corresponding implications for clinical decision making

    Distributing Coalition Value Calculations to Coalition Members

    Get PDF
    Within characteristic function games, agents have the option of joining one of many different coalitions, based on the utility value of each candidate coalition. However, determining this utility value can be computationally complex since the number of coalitions increases exponentially with the number of agents available. Various approaches have been proposed that mediate this problem by distributing the computational load so that each agent calculates only a subset of coalition values. However, current approaches are either highly inefficient due to redundant calculations, or make the benevolence assumption (i.e. are not suitable for adversarial environments). We introduce DCG, a novel algorithm that distributes the calculations of coalition utility values across a community of agents, such that: (i) no inter-agent communication is required; (ii) the coalition value calculations are (approximately) equally partitioned into shares, one for each agent; (iii) the utility value is calculated only once for each coalition, thus redundant calculations are eliminated; (iv) there is an equal number of operations for agents with equal sized shares; and (v) an agent is only allocated those coalitions in which it is a potential member. The DCG algorithm is pre- sented and illustrated by means of an example. We formally prove that our approach allocates all of the coalitions to the agents, and that each coalition is assigned once and only once
    • …
    corecore