56 research outputs found
An Interesting Class of Porous Polymer-Revisiting the Structure of Mesoporous α-d-Polysaccharide Gels
The processes involved in the transformation of non-porous, native polysaccharides to their highly porous equivalents introduce significant molecular complexity and are not yet fully understood. In this paper, we propose that distinct changes in polysaccharide local short-range ordering promotes and directs the formation of meso- and micro-pores, which are investigated here using N2 sorption, FTIR, and solid-state 13CNMR. It is found that an increase in the overall double helical amylose content, and their local association structures, are responsible for formation of the porous polysaccharide gel phase. An exciting consequence of this local ordering change is elegantly revealed using a 19FNMR experiment, which identifies the stereochemistry-dependent diffusion of a fluorinated chiral probe molecule (1-phenyl-2,2,2-trifluoroethanol) from the meso- to the micro-pore region. This finding opens opportunities in the area of polysaccharide-based chiral stationary phases and asymmetric catalyst preparation
Characterization and evaluation of acid-modified starch of Dioscorea oppositifolia (Chinese yam) as a binder in chloroquine phosphate tablets
Chinese yam (Dioscorea oppositifolia) starch modified by acid hydrolysis was characterized and compared with native starch as a binder in chloroquine phosphate tablet formulations. The physicochemical and compressional properties (using density measurements and the Heckel and Kawakita equations) of modified Chinese yam starch were determined, and its quantitative effects as a binder on the mechanical and release properties of chloroquine phosphate were analyzed using a 2³ full factorial design. The nature (X1), concentration of starch (X2) and packing fraction (X3) were taken as independent variables and the crushing strength-friability ratio (CSFR), disintegration time (DT) and dissolution time (t80) as dependent variables. Acid-modified Chinese yam starch showed a marked reduction (p<0.05) in amylose content and viscosity but increased swelling and water-binding properties. The modified starch had a faster onset and greater amount of plastic flow. Changing the binder from native to acid-modified form led to significant increases (p<0.05) in CSFR and DT but a decrease in t80. An increase in binder concentration and packing fraction gave similar results for CSFR and DT only. These results suggest that acid-modified Chinese yam starches may be useful as tablet binders when high bond strength and fast dissolution are required
- …