12 research outputs found
Implications of WRF model resolutions on resolving rainfall variability with topography over East Africa
There is an increasing need to improve the accuracy of extreme weather forecasts for life-saving applications and in support of various socioeconomic sectors in East Africa, a region with remarkable mesoscale systems due to its complex topography defined by sharp gradients in elevation, inland water bodies, and landuse conversions. This study sought to investigate the impacts of the Weather Research and Forecasting (WRF) model spatial resolution on resolving rainfall variability with topography utilizing nested domains at 12 and 2.4 km resolutions. The model was driven by the National Centers for Environmental Prediction (NCEP)-Global Data Assimilation System (GDAS) Global Forecast System (GFS) final (FNL) reanalysis to simulate the weather patterns over East Africa from 3rd April 2018 to 30th April 2018, which were evaluated against several freely available gridded weather datasets alongside rainfall data from the Kenya Meteorological Department (KMD) stations. The reference datasets and the model outputs revealed that the highlands had more rainfall events and higher maximum daily rainfall intensity compared to the surrounding lowlands, attributed to orographic lifting enhancing convection. Rainfall was inversely proportional to altitude from 500 m to 1,100 m above sea level (ASL) for both coarse and fine resolutions. The convection-permitting setup was superior in three aspects: resolving the inverse altitude-rainfall relationship for altitudes beyond 3000 m ASL, simulating heavy rainfall events over the lowlands, and resolution of the diurnal cycle of low-level wind. Although the coarse resolution setup reasonably simulated rainfall over large mountains, only the convection-permitting configuration could accurately resolve rainfall variability over contrasting topographical features. The study notes that high-resolution modeling systems and topography-sensitive bias correction techniques are critical for improving the quality of operational weather forecasts in East Africa
Recommended from our members
Atmospheric and oceanic conditions associated with early and late onset for eastern Africa short rains
Timing of the rainy season is essential for a number of climate sensitive sectors over Eastern Africa. This is particularly true for the agricultural sector, where most activities depend on both the spatial and temporal distribution of rainfall throughout the season. Using a combination of observational and reanalysis datasets, the present study investigates the atmospheric and oceanic conditions associated with early and late onset for Eastern Africa short rains season (October to December). Our results indicate enhanced rainfall in October and November during years with early onset and rainfall deficit in years with late onset for the same months. Early onset years are found to be associated with warmer sea surface temperatures (SSTs) in the western Indian Ocean, and an enhanced moisture flux and anomalous low-level flow into Eastern Africa from as early as the first dekad of September. The late onset years are characterised by cooler SSTs in the western Indian Ocean, anomalous westerly moisture flux and zonal flow limiting moisture supply to the region. The variability in onset date is separated into the interannual and decadal components, and the links with SSTs and low-level circulation over the Indian Ocean basin are examined separately for both timescales. Significant correlations are found between the interannual variability of the onset and the Indian Ocean dipole mode index. On decadal timescales the onset is shown to be partly driven by the variability of the SSTs over the Indian Ocean. Understanding the influence of these potentially predictable SST and moisture patterns on onset variability has huge potential to improve forecasts of the East African short rains. Improved prediction of the variability of the rainy season onset has huge implications for improving key strategic decisions and preparedness action in many sectors, including agriculture
Table_1_Implications of WRF model resolutions on resolving rainfall variability with topography over East Africa.DOCX
There is an increasing need to improve the accuracy of extreme weather forecasts for life-saving applications and in support of various socioeconomic sectors in East Africa, a region with remarkable mesoscale systems due to its complex topography defined by sharp gradients in elevation, inland water bodies, and landuse conversions. This study sought to investigate the impacts of the Weather Research and Forecasting (WRF) model spatial resolution on resolving rainfall variability with topography utilizing nested domains at 12 and 2.4 km resolutions. The model was driven by the National Centers for Environmental Prediction (NCEP)-Global Data Assimilation System (GDAS) Global Forecast System (GFS) final (FNL) reanalysis to simulate the weather patterns over East Africa from 3rd April 2018 to 30th April 2018, which were evaluated against several freely available gridded weather datasets alongside rainfall data from the Kenya Meteorological Department (KMD) stations. The reference datasets and the model outputs revealed that the highlands had more rainfall events and higher maximum daily rainfall intensity compared to the surrounding lowlands, attributed to orographic lifting enhancing convection. Rainfall was inversely proportional to altitude from 500 m to 1,100 m above sea level (ASL) for both coarse and fine resolutions. The convection-permitting setup was superior in three aspects: resolving the inverse altitude-rainfall relationship for altitudes beyond 3000 m ASL, simulating heavy rainfall events over the lowlands, and resolution of the diurnal cycle of low-level wind. Although the coarse resolution setup reasonably simulated rainfall over large mountains, only the convection-permitting configuration could accurately resolve rainfall variability over contrasting topographical features. The study notes that high-resolution modeling systems and topography-sensitive bias correction techniques are critical for improving the quality of operational weather forecasts in East Africa.</p
Recommended from our members
Application of real time S2S forecasts over Eastern Africa in the co-production of climate services
A significant proportion of the population in Sub-Saharan Africa are vulnerable to extreme climatic conditions, hence there is a high demand for climate information. In response to this need, the Global Challenges Research Fund African Science for Weather Information and Forecasting Techniques has been undertaking a two-year testbed to co-produce tailored forecasts for different sectors using the sub-seasonal to seasonal forecast data- sets from the sub-seasonal to seasonal Real Time Pilot Initiative project. Sub-seasonal forecasts are essential for early warning and informed decision-making in the agriculture and food security sector. This study summarises the co-production process of climate services between the Intergovernmental Authority on Development (IGAD) Climate Prediction and Applications Centre and the Food Security and Nutrition Working Group for Eastern and Central Africa, highlighting the importance of efficient communication as well as the lessons learnt and chal- lenges faced in the co-production process. A case study approach is utilised to evaluate the model performance. Two contrasting case studies, one for an extreme rainfall event in week three in April and another for the evolution of tropical cyclone Gati were conducted for the year 2020. Skillful and timely climate information and services co-produced has the potential to increase the uptake, ownership, and appropriate use of sub-seasonal forecasts for resilience building in Eastern Africa
Recommended from our members
Drivers of sub-seasonal extreme rainfall and their representation in ECMWF forecasts during the Eastern African March-to-May seasons of 2018 to 2020
In recent years Eastern Africa has been severely impacted by extreme climate events such as droughts and flooding. In a region where people’s livelihoods are heavily dependent on climate conditions, extreme hydrometeorological events can exacerbate existing vulnerabilities. For example, suppressed rainfall during the March to May (MAM) 2019 rainy season led to substantial food insecurity. In order to enhance preparations against forecasted hydrometerological events, it is critical to assess rainfall predictions and their known drivers in regularly used forecast models. In this study we take a case study approach and evaluate drivers during MAM seasons of 2018, 2019 and 2020. We use observations, reanalysis and predictions from the European Centre for Medium-Range Weather Forecasts (ECMWF) to identify and evaluate rainfall drivers. Extreme rainfall during MAM 2018 and 2020 was associated with an active Madden Julian Oscillation (MJO) in phases 1 to 4, or/and a tropical cyclone to the east of Madagascar. On the other hand, the dry 2019 MAM season, which included a delayed rainfall onset, was associated with tropical cyclones to the west of Madagascar. In general, whilst ECMWF forecasts correctly capture temporal variations in anomalous rainfall, they generally underestimate rainfall intensities. Further analysis shows that underestimated rainfall is linked to a weak forecasted MJO and errors in the location and intensity of tropical cyclones. Taking a case study approach motivates further study to determine the best application of our understanding of rainfall drivers. Communicated effectively, knowledge of rainfall drivers and forecast uncertainty will inform preparedness actions and reduce climate-driven social and economic consequences
Projected effects of 1.5 °C and 2 °C global warming levels on the intra-seasonal rainfall characteristics over the Greater Horn of Africa
This study examines the effects of 1.5 °C and 2 °C global warming levels (GWLs) on intra-seasonal rainfall characteristics over the Greater Horn of Africa. The impacts are analysed based on the outputs of a 25-member regional multi-model ensemble from the Coordinated Regional Climate Downscaling Experiment project. The regional climate models were driven by Coupled Model Intercomparison Project Phase 5 Global Climate Models for historical and future (RCP8.5) periods. We analyse the three major seasons over the region, namely March–May, June–September, and October–December. Results indicate widespread robust changes in the mean intra-seasonal rainfall characteristics at 1.5 °C and 2 °C GWLs especially for the June–September and October–December seasons. The March–May season is projected to shift for both GWL scenarios with the season starting and ending early. During the June–September season, there is a robust indication of delayed onset, reduction in consecutive wet days and shortening of the length of rainy season over parts of the northern sector under 2 °C GWL. During the October–December season, the region is projected to have late-onset, delayed cessation, reduced consecutive wet days and a longer season over most of the equatorial region under the 2 °C GWL. These results indicate that it is crucial to limit the GWL to below 1.5 °C as the differences between the 1.5 °C and 2 °C GWLs in some cases exacerbates changes in the intra-seasonal rainfall characteristics over the Greater Horn of Africa
Sea Level Variability and Change
Land surface albedo represents the fraction of solar radiation scattered backward by land surfaces.
In the presence of vegetation, surface albedo results from complex nonlinear radiation transfer processes
determining the amount of radiation that is scattered by the vegetation and its background, transmitted
through the vegetation layer, or absorbed by the vegetation layer and its background. Anomalies in mid- and high
latitude regions of the Northern Hemisphere result
mainly from interannual variations in snow cover
extent and duration in winter and spring. The large
negative anomalies over the United States reflect the
lack of snowfall and snowpack over the Rockies, the
Midwest, and much of the eastern half of the country.JRC.H.7-Climate Risk Managemen
STATE OF THE CLIMATE IN 2011 Special Supplement to the Bulletin of the American Meteorological Society Vol. 93, No. 7, July 2012
Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Nina at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Nina. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1 degrees C from 2010 to 2011, associated with cooling influences of La Nina. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Nino to La Nina, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr(-1), almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was well-below average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced above-normal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and above-average surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmer-than-normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3 degrees C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3 degrees C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter
Meridional Overturning Circulation Observations in the Subtropical North Atlantic
Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Niña at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Niña. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1°C from 2010 to 2011, associated with cooling influences of La Niña. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Niño to La Niña, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr-1, almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was wellbelow average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced abovenormal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and aboveaverage surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmerthan- normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3°C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3°C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter. © 2012 American Meteorological Society
State of the climate in 2010
Several large-scale climate patterns influenced climate conditions and weather patterns across the globe during 2010. The transition from a warm El Nino phase at the beginning of the year to a cool La Nina phase by July contributed to many notable events, ranging from record wetness across much of Australia to historically low Eastern Pacific basin and near-record high North Atlantic basin hurricane activity. The remaining five main hurricane basins experienced below-to well-below-normal tropical cyclone activity. The negative phase of the Arctic Oscillation was a major driver of Northern Hemisphere temperature patterns during 2009/10 winter and again in late 2010. It contributed to record snowfall and unusually low temperatures over much of northern Eurasia and parts of the United States, while bringing above-normal temperatures to the high northern latitudes. The February Arctic Oscillation Index value was the most negative since records began in 1950. The 2010 average global land and ocean surface temperature was among the two warmest years on record. The Arctic continued to warm at about twice the rate of lower latitudes. The eastern and tropical Pacific Ocean cooled about 1 C from 2009 to 2010, reflecting the transition from the 2009/10 El Nino to the 2010/11 La Nina. Ocean heat fluxes contributed to warm sea surface temperature anomalies in the North Atlantic and the tropical Indian and western Pacific Oceans. Global integrals of upper ocean heat content for the past several years have reached values consistently higher than for all prior times in the record, demonstrating the dominant role of the ocean in the Earth's energy budget. Deep and abyssal waters of Antarctic origin have also trended warmer on average since the early 1990s. Lower tropospheric temperatures typically lag ENSO surface fluctuations by two to four months, thus the 2010 temperature was dominated by the warm phase El Nino conditions that occurred during the latter half of 2009 and early 2010 and was second warmest on record. The stratosphere continued to be anomalously cool. Annual global precipitation over land areas was about five percent above normal. Precipitation over the ocean was drier than normal after a wet year in 2009. Overall, saltier (higher evaporation) regions of the ocean surface continue to be anomalously salty, and fresher (higher precipitation) regions continue to be anomalously fresh. This salinity pattern, which has held since at least 2004, suggests an increase in the hydrological cycle. Sea ice conditions in the Arctic were significantly different than those in the Antarctic during the year. The annual minimum ice extent in the Arctic reached in September was the third lowest on record since 1979. In the Antarctic, zonally averaged sea ice extent reached an all-time record maximum from mid-June through late August and again from mid-November through early December. Corresponding record positive Southern Hemisphere Annular Mode Indices influenced the Antarctic sea ice extents. Greenland glaciers lost more mass than any other year in the decade-long record. The Greenland Ice Sheet lost a record amount of mass, as the melt rate was the highest since at least 1958, and the area and duration of the melting was greater than any year since at least 1978. High summer air temperatures and a longer melt season also caused a continued increase in the rate of ice mass loss from small glaciers and ice caps in the Canadian Arctic. Coastal sites in Alaska show continuous permafrost warming and sites in Alaska, Canada, and Russia indicate more significant warming in relatively cold permafrost than in warm permafrost in the same geographical area. With regional differences, permafrost temperatures are now up to 2 C warmer than they were 20 to 30 years ago. Preliminary data indicate there is a high probability that 2010 will be the 20th consecutive year that alpine glaciers have lost mass. Atmospheric greenhouse gas concentrations continued to rise and ozone depleting substances continued to decrease. Carbon dioxide increased by 2.60 ppm in 2010, a rate above both the 2009 and the 1980-2010 average rates. The global ocean carbon dioxide uptake for the 2009 transition period from La Nina to El Nino conditions, the most recent period for which analyzed data are available, is estimated to be similar to the long-term average. The 2010 Antarctic ozone hole was among the lowest 20% compared with other years since 1990, a result of warmer-than-average temperatures in the Antarctic stratosphere during austral winter between mid-July and early September