33 research outputs found

    Effects of polyamines on the expression of antioxidant genes and proteins in citrus plants exposed to salt stress

    Get PDF
    Although there are accumulating reports that polyamines are involved in abiotic/oxidative stress responses, their role is not yet fully understood. Salt stress is one of the most devastating abiotic stresses which seriously interrupt plant growth and productivity. The present study attempts to examine the effects of root treatments with putrescine (Put, I mM), spermidine (Spd, ImM) and spermine (Spm, ImM) on polyamine homeostasis, as well as on several antioxidant-related genes and proteins in the leaves of citrus plants (Citrus aurantium L.) exposed to 150 mM NaCI for 15 d. Analysis of endogenous levels of free polyarnines in NaCl-stressed plant tissues reveals the existence of a polyamine transport system from roots to leaves. Real-time analysis of reactive oxygen species (ROS) by confocal laser scanning microscopy (CLSM) showed an over-accumulation of superoxide anion (02) and hydrogen peroxide (H202) in the stomata of citrus plants exposed to salt stress. Exogenously applied polyamines to salinized nutrient solution induced the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and ascrobic oxidase (AO) whereas it caused the opposite effect on peroxidase (POD), guaiacol peroxidase (GPO D) and ascorbate peroxidase (APX). The effect of polyamines was further examined by determining the plant's antioxidant gene expression profile following a quantitative real-time RT-PCR approach. The overall results indicate that the interaction between different polyamines can be dispersed throughout the citrus plant, and provide additional information suggesting that polyamines may act as a biological mediator allowing citrus plants to activate specific antioxidant responses against salinit

    Leukocyte Integrins: Role in Leukocyte Recruitment and as Therapeutic Targets in Inflammatory Disease

    Get PDF
    Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signalling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1- integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets

    A micro-structured 5kW complete fuel processor for iso-octane as hydrogen supply system for mobile auxiliary power units Part I. Development of autothermal reforming catalyst and reactor

    Get PDF
    A micro-structured autothermal reformer was developed for a fuel processing/fuel cell system running on iso-octane and designed for an electrical power output of 5kWel. The target application was an automotive auxiliary power unit (APU). The work covered both catalyst and reactor development. In fixed bed screening, nickel and rhodium were identified as the best candidates for autothermal reforming of gasoline. Under higher feed flow rates applied in microchannel testing, a catalyst formulation containing 1 wt.% Rh on alumina prepared by the sol–gel synthesis route proved to be stable at least in the medium term. This catalyst was introduced into the final prototype reactor designed to supply a 5kW fuel cell, which was based upon m cro-structured stainless steel foils. The reactor was optimised for equipartition of flows by numerical simulation. Testing in a pilot scale test rig, which was limited to a specified power equivalent of 3.5kWel, revealed more than 97% conversion of gasoline at 124 Ndm3/min total flow-rate of reformate, which corresponded to a WHSV of 316.5 Ndm3/(h gcat)

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer

    Get PDF
    Triple-negative (TN) breast cancer is an aggressive subtype of breast cancer associated with a unique set of epidemiologic and genetic risk factors. We conducted a two-stage genome-wide association study of TN breast cancer (stage 1: 1529 TN cases, 3399 controls; stage 2: 2148 cases, 1309 controls) to identify loci that influence TN breast cancer risk. Variants in the 19p13.1 and PTHLH loci showed genome-wide significant associations (P < 5 × 10− 8) in stage 1 and 2 combined. Results also suggested a substantial enrichment of significantly associated variants among the single nucleotide polymorphisms (SNPs) analyzed in stage 2. Variants from 25 of 74 known breast cancer susceptibility loci were also associated with risk of TN breast cancer (P < 0.05). Associations with TN breast cancer were confirmed for 10 loci (LGR6, MDM4, CASP8, 2q35, 2p24.1, TERT-rs10069690, ESR1, TOX3, 19p13.1, RALY), and we identified associations with TN breast cancer for 15 additional breast cancer loci (P < 0.05: PEX14, 2q24.1, 2q31.1, ADAM29, EBF1, TCF7L2, 11q13.1, 11q24.3, 12p13.1, PTHLH, NTN4, 12q24, BRCA2, RAD51L1-rs2588809, MKL1). Further, two SNPs independent of previously reported signals in ESR1 [rs12525163 odds ratio (OR) = 1.15, P = 4.9 × 10− 4] and 19p13.1 (rs1864112 OR = 0.84, P = 1.8 × 10− 9) were associated with TN breast cancer. A polygenic risk score (PRS) for TN breast cancer based on known breast cancer risk variants showed a 4-fold difference in risk between the highest and lowest PRS quintiles (OR = 4.03, 95% confidence interval 3.46–4.70, P = 4.8 × 10− 69). This translates to an absolute risk for TN breast cancer ranging from 0.8% to 3.4%, suggesting that genetic variation may be used for TN breast cancer risk prediction

    Aufbau eines multidimensionalen Prozess-GC-MS

    No full text
    Zur Industrie 4.0 gehören prozessanalytische Methoden, die schnellstmöglich chemische Informationen über Edukte, Zwischenstufen und Produkte liefern. Erforderlich für Prozessführung und Bilanzierung sind automatische, reproduzierbare und repräsentative Probennahme und Online-Totalanalyse aller Komponenten. In der Kraftstoffsynthese funktioniert dies auch mit einem speziell konfigurierten Gaschromatographen mit massenselektivem Detektor

    Citrus Plants: A Model System for Unlocking the Secrets of NO and ROS-Inspired Priming Against Salinity and Drought

    No full text
    International audiencePlants treated with chemical compounds can develop an enhanced capacity to resist long after being subjected to (a)biotic stress, a phenomenon known as priming. Evidence suggests that reactive oxygen species (ROS) and reactive nitrogen species (RNS) coordinately regulate plant stress responses to adverse environmental conditions; however, the mechanisms underlying this function remain unknown. Based on the observation that pre-exposure of citrus (Citrus aurantium L.) roots to the NO donor sodium nitroprusside (SNP) or to H2O2 prior to NaCl application can induce acclimation against subsequent stress we characterized the changes occurring in primed citrus tissues using several approaches. Herein, using this experimental model system, we provide an overview of our current knowledge of the possible mechanisms associated with NO and H2O2 priming to abiotic stresses, particularly concerning salinity and drought. The data and ideas presented here introduce six aspects of priming behavior in citrus under abiotic stress that provide knowledge necessary to exploit priming syndrome in the context of sustainable agriculture

    Involvement of AsA/DHA and GSH/GSSG Ratios in Gene and Protein Expression and in the Activation of Defence Mechanisms Under Abiotic Stress Conditions

    No full text
    In a persistently changing environment there are many adverse abiotic stress conditions such as cold, heat, drought, salinity, heavy metal toxicity and oxygen deprivation, which remarkably influence plant growth and crop production. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS) during various processes associated with abiotic stress. Moreover, the generation of ROS is the main means for higher plants to transmit cellular signalling information concerning the changing environmental conditions. Therefore, plants have evolved inducible redox state-based sensing mechanisms that are activated or amplified in response to adverse environmental conditions. Ascorbate and glutathione, the key cellular redox buffers, are used for both detoxification of ROS and transmission of redox signals. In recent years, it has become clear that abiotic stress conditions induce changes in the reduction/oxidation (redox) state of signalling molecules, which in turn modulate gene and protein expression to increase plant acclimation to abiotic stress. This important redox state-related branch of science has given several clues in understanding the adaptive plant responses to different stressful regimes. In this chapter, an overview of the literature is briefly presented in terms of the main function of ascorbate and glutathione in plant cells. Further more, we describe how important forms of abiotic stress regulate the expression of genes and proteins involved in the ascorbate and glutathione redox sensing system

    Hydrogen Sulfide: A Potent Tool in Postharvest Fruit Biology and Possible Mechanism of Action

    No full text
    Hydrogen sulfide (H2S), an endogenous gaseous molecule, is considered as a signaling agent, in parallel with other low molecular weight reactive substances, mainly hydrogen peroxide (H2O2) and nitric oxide (NO), in various plant systems. New studies are now revealing that the postharvest application of H2S, through H2S donors such as sodium hydrosulfide (NaSH) or sodium sulfide (Na2S), can inhibit fruit ripening and senescence programs in numerous fruits. We discuss here current knowledge on the impact of H2S in postharvest physiology of several climacteric and non-climacteric fruits such as banana, apple, pear, kiwifruit, strawberry, mulberry fruit, and grape. Although there is still a considerable lack of studies establishing the mechanisms by which H2S signaling is linked to fruit metabolism, we highlight several candidate mechanisms, including a putative cross-talk between H2S and ethylene, reactive oxygen and nitrogen species, oxidative/nitrosative stress signaling, sulfate metabolism, and post-translational modification of protein cysteine residues (S-sulfhydration) as being functional in this H2S postharvest action. Understanding H2S metabolism and signaling during postharvest storage and the interplay with other key player molecules would therefore provide new, improved strategies for better fruit postharvest storage. To achieve this understanding, postharvest fruit physiology research will need to focus increasingly on the spatial interaction between H2S and ethylene perception as well as on the interplay between S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation under several postharvest conditions
    corecore