9 research outputs found

    Stress-Regulated Translational Attenuation Adapts Mitochondrial Protein Import through Tim17A Degradation

    Get PDF
    SummaryStress-regulated signaling pathways protect mitochondrial proteostasis and function from pathologic insults. Despite the importance of stress-regulated signaling pathways in mitochondrial proteome maintenance, the molecular mechanisms by which these pathways maintain mitochondrial proteostasis remain largely unknown. We identify Tim17A as a stress-regulated subunit of the translocase of the inner membrane 23 (TIM23) mitochondrial protein import complex. We show that Tim17A protein levels are decreased downstream of stress-regulated translational attenuation induced by eukaryotic initiation factor 2α (eIF2α) phosphorylation through a mechanism dependent on the mitochondrial protease YME1L. Furthermore, we demonstrate that decreasing Tim17A attenuates TIM23-dependent protein import, promotes the induction of mitochondrial unfolded protein response (UPR)-associated proteostasis genes, and confers stress resistance in C. elegans and mammalian cells. Thus, our results indicate that Tim17A degradation is a stress-responsive mechanism by which cells adapt mitochondrial protein import efficiency and promote mitochondrial proteostasis in response to the numerous pathologic insults that induce stress-regulated translation attenuation

    KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation.

    Get PDF
    Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.This work was supported by the Wellcome Trust (098497/Z/12/Z; 077016/Z/05/Z; 096106/Z/11/Z) (ISF and LRP), Medical Research Council (MC_U106179471) (NW), NIHR Cambridge Biomedical Research Centre (ISF, IB and SOR), and European Research Council (ISF). This study makes use of data generated by the UK10K Consortium (WT091310). A full list of the investigators who contributed to the generation of the data is available from http://www.UK10K.org.This is the final published version. It first appeared at http://www.cell.com/abstract/S0092-8674%2813%2901276-2

    Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    Get PDF
    A. Palotie on työryhmän UK10K Consortium jäsen.Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as described previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF similar to 0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 x 10(-3)), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies.Peer reviewe

    Biochemical studies on the pre-replication complex of archaea

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    No full text
    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS, which were sometimes found with accelerated growth rather than short stature as describedw previously. Nominally significant associations were found for rare functional variants in BBS1, BBS9, GNAS, MKKS, CLOCK and ANGPTL6. The p.S284X variant in ANGPTL6 drives the association signal (rs201622589, MAF∼0.1%, odds ratio = 10.13, p-value = 0.042) and results in complete loss of secretion in cells. Further analysis including additional case-control studies and population controls (N = 260,642) did not support association of this variant with obesity (odds ratio = 2.34, p-value = 2.59 × 10-3), highlighting the challenges of testing rare variant associations and the need for very large sample sizes. Further validation in cohorts with severe obesity and engineering the variants in model organisms will be needed to explore whether human variants in ANGPTL6 and other genes that lead to obesity when deleted in mice, do contribute to obesity. Such studies may yield druggable targets for weight loss therapies
    corecore