410 research outputs found
The HARPS search for southern extra-solar planets XXXV. Planetary systems and stellar activity of the M dwarfs GJ 3293, GJ 3341, and GJ 3543
Context. Planetary companions of a fixed mass induce larger amplitude reflex
motions around lower-mass stars, which helps make M dwarfs excellent targets
for extra-solar planet searches. State of the art velocimeters with 1m/s
stability can detect very low-mass planets out to the habitable zone of these
stars. Low-mass, small, planets are abundant around M dwarfs, and most known
potentially habitable planets orbit one of these cool stars.
Aims. Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6m
telescope at La Silla observatory makes a major contribution to this sample.
Methods. We present here dense radial velocity (RV) time series for three M
dwarfs observed over years: GJ 3293 (0.42M), GJ 3341
(0.47M), and GJ 3543 (0.45M). We extract those RVs through
minimum matching of each spectrum against a high S/N ratio stack of
all observed spectra for the same star. We then vet potential orbital signals
against several stellar activity indicators, to disentangle the Keplerian
variations induced by planets from the spurious signals which result from
rotational modulation of stellar surface inhomogeneities and from activity
cycles.
Results. Two Neptune-mass planets - and
- orbit GJ 3293 with periods d and
d, possibly together with a super-Earth -
- with period . A super-Earth
- - orbits GJ 3341 with . The RV
variations of GJ 3543, on the other hand, reflect its stellar activity rather
than planetary signals.Comment: Accepted for publication in A&A, 19 pages, 12 figures, 7 table
Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph
Context. The temperate Earth-mass planet Proxima b is the closest exoplanet
to Earth and represents what may be our best ever opportunity to search for
life outside the Solar System. Aims. We aim at directly detecting Proxima b and
characterizing its atmosphere by spatially resolving the planet and obtaining
high-resolution reflected-light spectra. Methods. We propose to develop a
coupling interface between the SPHERE high-contrast imager and the new ESPRESSO
spectrograph, both installed at ESO VLT. The angular separation of 37 mas
between Proxima b and its host star requires the use of visible wavelengths to
spatially resolve the planet on a 8.2-m telescope. At an estimated
planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely
challenging to detect with SPHERE alone. However, the combination of a
~10^3-10^4 contrast enhancement from SPHERE to the high spectral resolution of
ESPRESSO can reveal the planetary spectral features and disentangle them from
the stellar ones. Results. We find that significant but realistic upgrades to
SPHERE and ESPRESSO would enable a 5-sigma detection of the planet and yield a
measurement of its true mass and albedo in 20-40 nights of telescope time,
assuming an Earth-like atmospheric composition. Moreover, it will be possible
to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm,
and the methane band at 715 nm. In particular, a 3.6-sigma detection of O2
could be made in about 60 nights of telescope time. Those would need to be
spread over 3 years considering optimal observability conditions for the
planet. Conclusions. The very existence of Proxima b and the SPHERE-ESPRESSO
synergy represent a unique opportunity to detect biosignatures on an exoplanet
in the near future. It is also a crucial pathfinder experiment for the
development of Extremely Large Telescopes and their instruments (abridged).Comment: 16 pages, 7 figures, revised version accepted to A&
A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b
Context. GJ 436b is one of the few transiting warm Neptunes for which a
detailed characterisation of the atmosphere is possible, whereas its
non-negligible orbital eccentricity calls for further investigation.
Independent analyses of several individual datasets obtained with Spitzer have
led to contradicting results attributed to the different techniques used to
treat the instrumental effects. Aims. We aim at investigating these previous
controversial results and developing our knowledge of the system based on the
full Spitzer photometry dataset combined with new Doppler measurements obtained
with the HARPS spectrograph. We also want to search for additional planets.
Methods. We optimise aperture photometry techniques and the photometric
deconvolution algorithm DECPHOT to improve the data reduction of the Spitzer
photometry spanning wavelengths from 3-24 {\mu}m. Adding the high precision
HARPS radial velocity data, we undertake a Bayesian global analysis of the
system considering both instrumental and stellar effects on the flux variation.
Results. We present a refined radius estimate of RP=4.10 +/- 0.16 R_Earth, mass
MP=25.4 +/- 2.1 M_Earth and eccentricity e= 0.162 +/- 0.004 for GJ 436b. Our
measured transit depths remain constant in time and wavelength, in disagreement
with the results of previous studies. In addition, we find that the
post-occultation flare-like structure at 3.6 {\mu}m that led to divergent
results on the occultation depth measurement is spurious. We obtain occultation
depths at 3.6, 5.8, and 8.0 {\mu}m that are shallower than in previous works,
in particular at 3.6 {\mu}m. However, these depths still appear consistent with
a metal-rich atmosphere depleted in methane and enhanced in CO/CO2, although
perhaps less than previously thought. We find no evidence for a potential
planetary companion, stellar activity, nor for a stellar spin-orbit
misalignment. [ABRIDGED]Comment: 25 pages, 26 figures, 8 tables, accepted for publication in A&
The SOPHIE search for northern extrasolar planets VIII. A warm Neptune orbiting HD164595
High-precision radial velocity surveys explore the population of low-mass
exoplanets orbiting bright stars. This allows accurately deriving their orbital
parameters such as their occurrence rate and the statistical distribution of
their properties. Based on this, models of planetary formation and evolution
can be constrained. The SOPHIE spectrograph has been continuously improved in
past years, and thanks to an appropriate correction of systematic instrumental
drift, it is now reaching 2 m/s precision in radial velocity measurements on
all timescales. As part of a dedicated radial velocity survey devoted to search
for low-mass planets around a sample of 190 bright solar-type stars in the
northern hemisphere, we report the detection of a warm Neptune with a minimum
mass of 16.1 +- 2.7 Mearth orbiting the solar analog HD164595 in 40 +- 0.24
days . We also revised the parameters of the multiplanetary system around
HD190360. We discuss this new detection in the context of the upcoming space
mission CHEOPS, which is devoted to a transit search of bright stars harboring
known exoplanets.Comment: 11 pages, 9 figure
Extrasolar planets and brown dwarfs around A--F type stars. VIII. A giant planet orbiting the young star HD113337
In the frame of the search for extrasolar planets and brown dwarfs around
early-type main-sequence stars, we present the detection of a giant planet
around the young F-type star HD113337. We estimated the age of the system to be
150 +100/-50 Myr. Interestingly, an IR excess attributed to a cold debris disk
was previously detected on this star. The SOPHIE spectrograph on the 1.93m
telescope at Observatoire de Haute-Provence was used to obtain ~300 spectra
over 6 years. We used our SAFIR tool, dedicated to the spectra analysis of A
and F stars, to derive the radial velocity variations. The data reveal a 324.0
+1.7/-3.3 days period that we attribute to a giant planet with a minimum mass
of 2.83 +- 0.24 Mjup in an eccentric orbit with e=0.46 +- 0.04. A long-term
quadratic drift, that we assign to be probably of stellar origin, is
superimposed to the Keplerian solution.Comment: 7 pages, 4 figure
The SOPHIE search for northern extrasolar planets VIII. Follow-up of ELODIE candidates: long-period brown-dwarf companions
Long-period brown dwarf companions detected in radial velocity surveys are
important targets for direct imaging and astrometry to calibrate the
mass-luminosity relation of substellar objects. Through a 20-year radial
velocity monitoring of solar-type stars that began with ELODIE and was extended
with SOPHIE spectrographs, giant exoplanets and brown dwarfs with orbital
periods longer than ten years are discovered. We report the detection of five
new potential brown dwarfs with minimum masses between 32 and 83 Jupiter mass
orbiting solar-type stars with periods longer than ten years. An upper mass
limit of these companions is provided using astrometric Hipparcos data,
high-angular resolution imaging made with PUEO, and a deep analysis of the
cross-correlation function of the main stellar spectra to search for blend
effects or faint secondary components. These objects double the number of known
brown dwarf companions with orbital periods longer than ten years and reinforce
the conclusion that the occurrence of such objects increases with orbital
separation. With a projected separation larger than 100 mas, all these brown
dwarf candidates are appropriate targets for high-contrast and high angular
resolution imaging.Comment: 17 pages, 9 figures, accepted in A&
The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone
We report the discovery of three new substellar companions to solar-type
stars, HD191806, HD214823, and HD221585, based on radial velocity measurements
obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph
are combined with observations acquired with its predecessor, ELODIE, to detect
and characterise the orbital parameters of three new gaseous giant and brown
dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained
at the Lick Observatory to improve the parameters of an already known giant
planet companion, HD16175 b. Thanks to the use of different instruments, the
data sets of all four targets span more than ten years. Zero-point offsets
between instruments are dealt with using Bayesian priors to incorporate the
information we possess on the SOPHIE/ELODIE offset based on previous studies.
The reported companions have orbital periods between three and five years and
minimum masses between 1.6 Mjup and 19 Mjup. Additionally, we find that the
star HD191806 is experiencing a secular acceleration of over 11 \ms\ per year,
potentially due to an additional stellar or substellar companion. A search for
the astrometric signature of these companions was carried out using Hipparcos
data. No orbit was detected, but a significant upper limit to the companion
mass can be set for HD221585, whose companion must be substellar.
With the exception of HD191806 b, the companions are located within the
habitable zone of their host star. Therefore, satellites orbiting these objects
could be a propitious place for life to develop.Comment: 12 pages + tables, 7 figures. Accepted for publication in Astronomy &
Astrophysic
GJ 1252 b: A 1.2 R\u3csub\u3e⊕\u3c/sub\u3e Planet Transiting An M3 Dwarf At 20.4 pc
We report the discovery of GJ 1252 b, a planet with a radius of 1.193 ± 0.074 R⊕ and an orbital period of 0.52 days around an M3-type star (0.381 ± 0.019 M⊕, 0.391 ± 0.020 R⊕) located 20.385 ± 0.019 pc away. We use Transiting Exoplanet Survey Satellite (TESS) data, ground-based photometry and spectroscopy, Gaia astrometry, and high angular resolution imaging to show that the transit signal seen in the TESS data must originate from a transiting planet. We do so by ruling out all false-positive scenarios that attempt to explain the transit signal as originating from an eclipsing stellar binary. Precise Doppler monitoring also leads to a tentative mass measurement of 2.09 ± 0.56 M⊕. The host star proximity, brightness (V = 12.19 mag, K = 7.92 mag), low stellar activity, and the system\u27s short orbital period make this planet an attractive target for detailed characterization, including precise mass measurement, looking for other objects in the system, and planet atmosphere characterization
Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc
We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of , an orbital period of days, and an equilibrium temperature of K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3σ upper mass limit of 8.4 on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip
- …