270 research outputs found
Overview of the experimental quest for the giant pairing vibration
The search for the giant pairing vibration (GPV) has a long standing history
since the 1970's when it was predicted. First experimental measurements focused
on (p,t) transfer reactions in the heavy nuclei and did not show convincing
evidence. The discovery of a signal compatible with the GPV in the light carbon
isotopes has renewed the interest for the GPV. It triggered new theoretical
models showing that the GPV in the heavy nuclei might be too wide or too melted
to be observed and triggered new experiments with radioactive probes based on
(He,He) transfer.Comment: arXiv admin note: substantial text overlap with arXiv:1905.0133
A new cross section measurement of reactions induced by 3He-particles on a carbon target
International audienceThe production of intense beams of light radioactive nuclei can be achieved at the SPIRAL2 facility using intense stable beams accelerated by the driver accelerator and impinging on light targets. The isotope 14O is identied to be of high interest for future experiments. The excitation function of the production reaction 12C(3He, n)14O was measured between 7 and 35 MeV. Results are compared with literature data. As an additional result, we report the rst cross-section measurement for the 12C(3He, +n)10C reaction. Based on this new result, the potential in-target 14O yield at SPIRAL2 was estimated: 2.4x1011 pps, for 1 mA of 3He at 35 MeV. This is a factor 140 higher than the in-target yield at SPIRAL1
Breakdown of the Z=8 shell closure in unbound 12O and its mirror symmetry
An excited state in the proton-rich unbound nucleus 12O was identified at 1.8(4) MeV via missing-mass spectroscopy with the 14O(p,t) reaction at 51 AMeV. The spin-parity of the state was determined to be 0+ or 2+ by comparing the measured differential cross sections with distorted-wave calculations. The lowered location of the excited state in 12O indicates the breakdown of the major shell closure at Z=8 near the proton drip line. This demonstrates the persistence of mirror symmetry in the disappearance of the magic number 8 between 12O and its mirror partner 12Be
Probing pre-formed alpha particles in the ground state of nuclei
In this Letter, we report on alpha particle emission through the nuclear
break-up in the reaction 40Ca on a 40Ca target at 50A MeV. It is observed that,
similarly to nucleons, alpha particles can be emitted to the continuum with
very specific angular distribution during the reaction. The alpha particle
properties can be understood as resulting from an alpha cluster in the daughter
nucleus that is perturbed by the short range nuclear attraction of the
collision partner and emitted. A time-dependent theory that describe the alpha
particle wave-function evolution is able to reproduce qualitatively the
observed angular distribution. This mechanism offers new possibilities to study
alpha particle properties in the nuclear medium.Comment: 4 pages, 3 figure
Study of multi-neutron emission in the β-decay of 11Li
The kinematics of two-neutron emission following the β-decay of 11Li was investigated for the first time by detecting the two neutrons in coincidence and by measuring their angle and energy. An array of liquid-scintillator neutron detectors was used to reject cosmic-ray and γ-ray backgrounds by pulse-shape discrimination. Cross-talk events in which two detectors are fired by a single neutron
were rejected using a filter tested on the β-1n emitter 9Li. A large cross-talk rejection rate is obtained (> 95%) over most of the energy range of interest. Application
to 11Li data leads to a significant number of events interpreted as β-2n decay. A discrete neutron line at ≈ 2 MeV indicates sequential two-neutron emission, possibly
from the unbound state at 10.6 MeV excitation energy in 11Be
Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing's disease.
The CABLES1 cell cycle regulator participates in the adrenal-pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing's disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene
Search for new resonant states in 10C and 11C and their impact on the cosmological lithium problem
The observed primordial 7Li abundance in metal-poor halo stars is found to be
lower than its Big-Bang nucleosynthesis (BBN) calculated value by a factor of
approximately three. Some recent works suggested the possibility that this
discrepancy originates from missing resonant reactions which would destroy the
7Be, parent of 7Li. The most promising candidate resonances which were found
include a possibly missed 1- or 2- narrow state around 15 MeV in the compound
nucleus 10C formed by 7Be+3He and a state close to 7.8 MeV in the compound
nucleus 11C formed by 7Be+4He. In this work, we studied the high excitation
energy region of 10C and the low excitation energy region in 11C via the
reactions 10B(3He,t)10C and 11B(3He,t)11C, respectively, at the incident energy
of 35 MeV. Our results for 10C do not support 7Be+3He as a possible solution
for the 7Li problem. Concerning 11C results, the data show no new resonances in
the excitation energy region of interest and this excludes 7Be+4He reaction
channel as an explanation for the 7Li deficit.Comment: Accepted for publication in Phys. Rev. C (Rapid Communication
GATE : a simulation toolkit for PET and SPECT
Monte Carlo simulation is an essential tool in emission tomography that can
assist in the design of new medical imaging devices, the optimization of
acquisition protocols, and the development or assessment of image
reconstruction algorithms and correction techniques. GATE, the Geant4
Application for Tomographic Emission, encapsulates the Geant4 libraries to
achieve a modular, versatile, scripted simulation toolkit adapted to the field
of nuclear medicine. In particular, GATE allows the description of
time-dependent phenomena such as source or detector movement, and source decay
kinetics. This feature makes it possible to simulate time curves under
realistic acquisition conditions and to test dynamic reconstruction algorithms.
A public release of GATE licensed under the GNU Lesser General Public License
can be downloaded at the address http://www-lphe.epfl.ch/GATE/
Spectroscopy of Na: Bridging the two-proton radioactivity of Mg
The unbound nucleus Na, the intermediate nucleus in the two-proton
radioactivity of Mg, was studied by the measurement of the resonant
elastic scattering reaction Ne(p,Ne)p performed at 4 A.MeV.
Spectroscopic properties of the low-lying states were obtained in a R-matrix
analysis of the excitation function. Using these new results, we show that the
lifetime of the Mg radioactivity can be understood assuming a sequential
emission of two protons via low energy tails of Na resonances
- …