12 research outputs found

    In Vivo Molecular Signatures of Cerebellar Pathology in Spinocerebellar Ataxia Type 3

    Full text link
    BackgroundNo treatment exists for the most common dominantly inherited ataxia Machado‐Joseph disease, or spinocerebellar ataxia type 3 (SCA3). Successful evaluation of candidate therapeutics will be facilitated by validated noninvasive biomarkers of disease pathology recapitulated by animal models.ObjectiveWe sought to identify shared in vivo neurochemical signatures in two mouse models of SCA3 that reflect the human disease pathology.MethodsCerebellar neurochemical concentrations in homozygous YACMJD84.2 (Q84/Q84) and hemizygous CMVMJD135 (Q135) mice were measured by in vivo magnetic resonance spectroscopy at 9.4 tesla. To validate the neurochemical biomarkers, levels of neurofilament medium (NFL; indicator of neuroaxonal integrity) and myelin basic protein (MBP; indicator of myelination) were measured in cerebellar lysates from a subset of mice and patients with SCA3. Finally, NFL and MBP levels were measured in the cerebellar extracts of Q84/Q84 mice upon silencing of the mutant ATXN3 gene.ResultsBoth Q84/Q84 and Q135 mice displayed lower N‐acetylaspartate than wild‐type littermates, indicating neuroaxonal loss/dysfunction, and lower myo‐inositol and total choline, indicating disturbances in phospholipid membrane metabolism and demyelination. Cerebellar NFL and MBP levels were accordingly lower in both models as well as in the cerebellar cortex of patients with SCA3 than controls. Importantly, N‐acetylaspartate and total choline correlated with NFL and MPB, respectively, in Q135 mice. Long‐term sustained RNA interference (RNAi)‐mediated reduction of ATXN3 levels increased NFL and MBP in Q84/Q84 cerebella.ConclusionsN‐acetylaspartate, myo‐inositol, and total choline levels in the cerebellum are candidate biomarkers of neuroaxonal and oligodendrocyte pathology in SCA3, aspects of pathology that are reversible by RNAi therapy. © 2020 International Parkinson and Movement Disorder SocietyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163456/2/mds28140.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163456/1/mds28140_am.pd

    Altered retinal structure and function in Spinocerebellar ataxia type 3

    Full text link
    Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice. We evaluated the retinal structure and function in five patients with SCA3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using optical coherence tomography (OCT) and electroretinogram (ERG). In the transgenic mice, we further: a) determined the retinal expression pattern of ATXN3 and the distribution of cones and rods using immunofluorescence (IF); and b) assessed the retinal ultrastructure using transmission electron microscopy (TEM). Some patients with SCA3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and showed further thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli. Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with SCA3

    Citalopram reduces aggregation of ATXN3 in a YAC transgenic mouse model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is a fatal polyglutamine disease with no disease-modifying treatment. The selective serotonin reuptake inhibitor citalopram was shown in nematode and mouse models to be a compelling repurposing candidate for Machado-Joseph disease therapeutics. We sought to confirm the efficacy of citalopram to decrease ATXN3 aggregation in an unrelated mouse model of Machado-Joseph disease. Four-week-old YACMJD84.2 mice and non-transgenic littermates were given citalopram 8 mg/kg in drinking water or water for 10 weeks. At the end of treatment, brains were collected for biochemical and pathological analyses. Brains of citalopram-treated YACMJD84.2 mice showed an approximate 50% decrease in the percentage of cells containing ATXN3-positive inclusions in the substantia nigra and three examined brainstem nuclei compared to controls. No differences in ATXN3 inclusion load were observed in deep cerebellar nuclei of mice. Citalopram effect on ATXN3 aggregate burden was corroborated by immunoblotting analysis. While lysates from the brainstem and cervical spinal cord of citalopram-treated mice showed a decrease in all soluble forms of ATXN3 and a trend toward reduction of insoluble ATXN3, no differences in ATXN3 levels were found between cerebella of citalopram-treated and vehicle-treated mice. Citalopram treatment altered levels of select components of the cellular protein homeostatic machinery that may be expected to enhance the capacity to refold and/or degrade mutant ATXN3. The results here obtained in a second independent mouse model of Machado-Joseph disease further support citalopram as a potential drug to be repurposed for this fatal disorder.This work was funded by Becky Babcox Research Fund/pilot research award G015617, University of Michigan to M.C.C. and NINDS/NIH R01NS038712 to H.L.P. The work performed at the University of Minho was funded by the European Regional Development Funds (FEDER), through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. This article was developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the FEDER. This work was also supported by FCT and COMPETE through the projects [PTDC/SAU-GMG/112617/2009] (to P.M.) and [EXPL/BIM-MEC/ 0239/2012] (to A.T.C.); by FCT through the project [POCI-01-0145- FEDER-016818 (PTDC/NEU-NMC/3648/2014)] (to P.M.); by National Ataxia Foundation (to P.M. and to A.T.C.); and by Ataxia UK (to P.M.). S.D.S. and A.T.C. were supported by fellowships from FCT, SFRH/BD/ 78388/2011 and SFRH/BPD/102317/2014, respectively. FCT fellowships are co-financed by POPH, QREN, Governo da RepĂșblica Portuguesa and EU/FSE

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Culture and the Gender Gap in Competitive Inclination: Evidence from the Communist Experiment in China

    Full text link
    corecore