33 research outputs found

    Electroanalysis may be used in the Vanillin Biotechnological Production

    Get PDF
    This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible

    Generation of flavors and fragrances through biotransformation and de novo synthesis

    Get PDF
    Flavors and fragrances are the result of the presence of volatile and non-volatile compounds, appreciated mostly by the sense of smell once they usually have pleasant odors. They are used in perfumes and perfumed products, as well as for the flavoring of foods and beverages. In fact the ability of the microorganisms to produce flavors and fragrances has been described for a long time, but the relationship between the flavor formation and the microbial growth was only recently established. After that, efforts have been put in the analysis and optimization of food fermentations that led to the investigation of microorganisms and their capacity to produce flavors and fragrances, either by de novo synthesis or biotransformation. In this review, we aim to resume the recent achievements in the production of the most relevant flavors by bioconversion/biotransformation or de novo synthesis, its market value, prominent strains used, and their production rates/maximum concentrations.We would like to thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145FEDER-006684), and BiotecNorte operation (NORTE-01-0145FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Ternary and quaternary blends as partial replacement of cement to produce hollow sandcrete blocks

    Get PDF
    Hollow sandcrete blocks constitute more than 90% of residential building construction in developing countries especially in West Africa. Over-reliance on dredged river sands and conventional ordinary Portland cement (OPC) contributes to environmental degradation and post-construction problems such as swelling and shrinkage-induced cracks prevalent in construction projects. The study investigates potential utilization of locally available materials such as laterite, calcite and calcined clay as ternary and quaternary blends to replace cement and quarry dust as 100% replacement of river sand with the aid of Taguchi-Response surface methodology approach. Optimum ternary blend of 24% calcined clay +1% calcite +75% OPC is recommended to achieve volume stability, higher compressive strength and higher flexural load capacity. Alternatively, ternary blends of 24% calcite +4% calcined clay +72% OPC can also be utilized. The improved mechanical properties were attributed to the Na- and Ca-rich aluminosilicates provided by the blended cements. Successful utilization of ternary and quaternary blended cements to produce stronger, durable and eco-friendly sandcrete blocks depends on utilization of high binder-to-aggregate ratio, optimal combination of the constituents, appropriate water-cement ratio and curing/production method. Partial and 100% replacement of river sand with granite dust is possible and contributes to reduction of environmental problems caused by river dredging as well as cleaner, ecofriendly construction. Ternary and quaternary blended cements is recommended to avert post-construction problems such as swelling and shrinkage-induced cracks prevalent in construction projects

    Hybrid Processing

    Get PDF
    Human societies have converted biomass into energy and products for millennia using both biochemical and thermochemical processes. Familiar examples of biochemical processing includes fermentation of sugar- or starch-rich crops and milk into sauerkraut, beer, wine, yogurt, and cheese. Familiar examples of thermochemical processing include baking and cooking of food and burning wood for heat and power

    Isolation and Screening of a native Citrobacter sp. with high nicotine-tolerant and its application as a biocatalyst for biodegradation of nicotine

    No full text
    Introduction: Nicotine is a toxic plant alkaloid and it has been designated as hazardous by the United States Environmental Protection Agency (USEPA) since 1994. The present work was directed to screen nicotine resistant bacteria, that is used as biocatalyst in the biodegradation of nicotine from contaminated sites. Materials and methods: Collected soil samples from 12 tobacco farms were selected as target sites for sampling. Enrichment nicotine-degrading bacteria were performed in minimal salt media containing nicotine as the sole carbon and nitrogen sources. Agar dilution plate method was performed for determining intrinsic tolerance of bacterial isolates to nicotine. Phenotypic characterization and phylogenetic analysis were used to identify the selected bacterial isolate able to degrade nicotine. To determine the optimal conditions for the bio-removal of nicotine, the effects of initial nicotine concentration, incubation time and the addition of carbon and nitrogen sources in the selected strain were tested. The quantification of residual nicotine in the culture media was measured by high performance liquid chromatography (HPLC). Results: Among 20 bacterial isolates for degradation of nicotine, the strain TPS2 showed a high level of resistance and degradation efficiency. Results of phenotypic identification and phylogenetic analysis showed the native strain TPS2 belongs to the Citrobacter sp. strain TPS2 (GeneBank accession no. KM110046). According to the results of de-nicotination experiment, the native strain TPS2 is able to remove 100% of nicotine with an initial concentration 2.5 g/l in the presence of 2.5 g/l fructose. Discussion and conclusion: The results showed that the screened Citrobacter sp. was suitable candidate for degradation of nicotine from wastewater and sites that contaminated with nicotine. It is seemed by using of the microbial biocatalyst the ecosystem contamination of toxic nicotine can be decreased. The present work is the first report on the degradation of nicotine by native microorganisms

    Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt

    No full text
    In this study, about 112 isolates of Streptomyces were isolated from chickpea rhizospheric soils. Among the isolated strains, five showed strong inhibitory effects against chickpea Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris in vitro using plate assay and selected for further studies. The selected strains were identified as Streptomyces spp. based on morphological and biochemical characterization as well as 16S rDNA sequences analysis. Our results assigned them to strains related to genus of Streptomyces. In vitro, antagonistic effects of Streptomyces strains against the disease were evaluated through the dual-culture method, volatile and non-volatile metabolites, siderophore, protease and chitinase production. All bacterial strains inhibited mycelial growth of the pathogen ranging from 26 to 44.2% in dual culture assay. The non-volatile extract of five of the Streptomyces strains inhibited more than 50% growth of the pathogen, whereas volatile compounds were less effective on mycelial growth inhibition (20.2 to 33.4%). The ability of the biocontrol agents to produce siderophore and protease were varied, whereas, production of chitinase was detected for all strains. Results of the greenhouse assay indicated that all biocontrol agents reduced disease severity (ranging from 38.7 to 54.8%). Accordingly, strain KS62 showed higher control efficacy (54.8%). In addition, the biomass of chickpea plants (plant height and dry weight) significantly increased in plants treated with Streptomyces strains compared to non-bacterized control. The results of this study showed that it may be possible to manage chickpea Fusarium wilt disease effectively by using Streptomyces species, as biocontrol agents. Therefore, evaluating their efficiency under field conditions is needed

    Green extracellular synthesis of the Fe2O3 nanoparticles by a native marine bacterium, Alcaligenes sp. strain NV06

    No full text
    This study investigated the potential of aquatic bacteria for their ability as a biocatalyst to synthesized Fe2O3 nanoparticles using iron precursor, FeCl3. A total of 25 aquatic bacterial strains were isolated in trypticase soy agar plus 10 mM FeCl3 with selective enrichment technique. Among the bacterial strains evaluated, NV06 was the only strain able to synthesize Fe2O3 nanoparticles extracellularly. The strain NV06 was identified as Alcaligenes sp., on the basis of phenotypic and molecular characteristics. Extracellular synthesis of Fe2O3 nanoparticles by this strain was investigated under the optimal conditions. The biosynthesized Fe2O3 nanoparticles were characterized using UV–visible spectrophotometry (UV-Vis), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FTIR) spectroscopy. The results showed that cell-free extract (CFE) of the bacterium strain can produce the rod-shaped Fe2O3 nanoparticles with mean edge lengths of 80.2 nm and mean diameters of 25.5 nm, after being exposed to FeCl3 solution (10 mM), at an optimum pH of 6 and an optimum temperature of 28 °C, after 96 hours of incubation at 150 rpm. This is the first report on the extracellular biosynthesis of Fe2O3 nanoparticles using the genus of Alcaligenes under the CFE strategy. It could be speculated that the results of the study can hopefully introduce the inherent capabilities of aquatic microbes as safe, simple, and effective biocatalysts in the production of Fe2O3 nanoparticles
    corecore