230 research outputs found

    Uncovering perceived identification accuracy of in-vehicle biometric sensing

    Get PDF
    Biometric techniques can help make vehicles safer to drive, authenticate users, and provide personalized in-car experiences. However, it is unclear to what extent users are willing to trade their personal biometric data for such benefits. In this early work, we conducted an open card sorting study (N=11) to better understand how well users perceive their physical, behavioral and physiological features can personally identify them. Findings showed that on average participants clustere

    An Exactly Solvable Phase-Field Theory of Dislocation Dynamics, Strain Hardening and Hysteresis in Ductile Single Crystals

    Full text link
    An exactly solvable phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals is developed. The theory accounts for: an arbitrary number and arrangement of dislocation lines over a slip plane; the long-range elastic interactions between dislocation lines; the core structure of the dislocations resulting from a piecewise quadratic Peierls potential; the interaction between the dislocations and an applied resolved shear stress field; and the irreversible interactions with short-range obstacles and lattice friction, resulting in hardening, path dependency and hysteresis. A chief advantage of the present theory is that it is analytically tractable, in the sense that the complexity of the calculations may be reduced, with the aid of closed form analytical solutions, to the determination of the value of the phase field at point-obstacle sites. In particular, no numerical grid is required in calculations. The phase-field representation enables complex geometrical and topological transitions in the dislocation ensemble, including dislocation loop nucleation, bow-out, pinching, and the formation of Orowan loops. The theory also permits the consideration of obstacles of varying strengths and dislocation line-energy anisotropy. The theory predicts a range of behaviors which are in qualitative agreement with observation, including: hardening and dislocation multiplication in single slip under monotonic loading; the Bauschinger effect under reverse loading; the fading memory effect, whereby reverse yielding gradually eliminates the influence of previous loading; the evolution of the dislocation density under cycling loading, leading to characteristic `butterfly' curves; and others

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Systematic Reviews of Animal Experiments Demonstrate Poor Human Clinical and Toxicological Utility

    Get PDF
    The assumption that animal models are reasonably predictive of human outcomes provides the basis for their widespread use in toxicity testing and in biomedical research aimed at developing cures for human diseases. To investigate the validity of this assumption, the comprehensive Scopus biomedical bibliographic databases were searched for published systematic reviews of the human clinical or toxicological utility of animal experiments. In 20 reviews in which clinical utility was examined, the authors concluded that animal models were either significantly useful in contributing to the development of clinical interventions, or were substantially consistent with clinical outcomes, in only two cases, one of which was contentious. These included reviews of the clinical utility of experiments expected by ethics committees to lead to medical advances, of highly-cited experiments published in major journals, and of chimpanzee experiments — those involving the species considered most likely to be predictive of human outcomes. Seven additional reviews failed to clearly demonstrate utility in predicting human toxicological outcomes, such as carcinogenicity and teratogenicity. Consequently, animal data may not generally be assumed to be substantially useful for these purposes. Possible causes include interspecies differences, the distortion of outcomes arising from experimental environments and protocols, and the poor methodological quality of many animal experiments, which was evident in at least 11 reviews. No reviews existed in which the majority of animal experiments were of good methodological quality. Whilst the effects of some of these problems might be minimised with concerted effort (given their widespread prevalence), the limitations resulting from interspecies differences are likely to be technically and theoretically impossible to overcome. Non-animal models are generally required to pass formal scientific validation prior to their regulatory acceptance. In contrast, animal models are simply assumed to be predictive of human outcomes. These results demonstrate the invalidity of such assumptions. The consistent application of formal validation studies to all test models is clearly warranted, regardless of their animal, non-animal, historical, contemporary or possible future status. Likely benefits would include, the greater selection of models truly predictive of human outcomes, increased safety of people exposed to chemicals that have passed toxicity tests, increased efficiency during the development of human pharmaceuticals and other therapeutic interventions, and decreased wastage of animal, personnel and financial resources. The poor human clinical and toxicological utility of most animal models for which data exists, in conjunction with their generally substantial animal welfare and economic costs, justify a ban on animal models lacking scientific data clearly establishing their human predictivity or utility

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal

    A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays

    Get PDF
    The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Lambda_b are selected by the presence of energetic Lambda particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Lambda particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))% Combined with a previous OPAL measurement, one obtains f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European Physical Journal

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the Michel Parameters in Leptonic Tau Decays

    Get PDF
    The Michel parameters of the leptonic tau decays are measured using the OPAL detector at LEP. The Michel parameters are extracted from the energy spectra of the charged decay leptons and from their energy-energy correlations. A new method involving a global likelihood fit of Monte Carlo generated events with complete detector simulation and background treatment has been applied to the data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu universality is assumed and inferring the tau polarization from neutral current data, the measured Michel parameters are extracted. Limits on non-standard coupling constants and on the masses of new gauge bosons are obtained. The results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European Physical Journal

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
    • …
    corecore