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Abstract

Biometric techniques can help make vehicles safer to drive,
authenticate users, and provide personalized in-car expe-
riences. However, it is unclear to what extent users are
willing to trade their personal biometric data for such ben-
efits. In this early work, we conducted an open card sorting
study (N=11) to better understand how well users perceive
their physical, behavioral and physiological features can
personally identify them. Findings showed that on average
participants clustered features into six groups, and helped
us revise ambiguous cards and better understand users’
clustering. These findings provide the basis for a follow up
online closed card sorting study to more fully understand
perceived identification accuracy of (in-vehicle) biometric
sensing. By uncovering this at a larger scale, we can then
further study the privacy and user experience trade-off in
(automated) vehicles.
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Introduction

Biometric techniques can make vehicles safer to drive (e.g.,
drowsiness detection [44]), protect them against theft (e.g.,
tap-based authentication [20]), provide higher cost effi-
ciency (e.g., rewarding good driver profiles through insur-
ance telematics [11]), or provide personalized in-car expe-
riences (e.g., route personalization based on driving style
[6]). These advantages and benefits notwithstanding, bio-
metric techniques and the promise of connected cars also
raise large privacy concerns [6, 45], for example concerning
the privacy1 and security of (sensed) personal data [35].

Prior research has addressed these issues by focusing on
the so-called privacy-personalization paradox, namely that
consumers who value information transparency are also
less likely to participate in personalization [2]. This phe-
nomenon has been generally less studied in an automotive
context, and for automated driving in particular. The latter
context becomes especially relevant, where non-driving-
related activities (e.g., texting, eating) are desirable to per-
form in the car [34], which brings about opportunities for a
wider range of in-vehicle biometric sensing [36]. To address
the question of trading personal biometric data for in-vehicle
user benefits, we take the first step here using an open card
sorting study to better understand how well users perceive
their physical, behavioral and physiological features can
personally identify them. We contribute early empirical find-
ings of how participants interpret and cluster such features.

Figure 1: A participant sorting
cards.

Background and Related work

According to Jain et al. [15], biometric recognition "can be
defined as the science of establishing the identity of an in-
dividual based on the physical and/or behavioral charac-
teristics of the person either in a fully automated or a semi-
automated manner." Furthermore, the context in which data

1See also EU GDPR on vehicles: http://tiny.cc/7abj8y; 19.06.2019

is collected, and who the data is to be sold to (e.g. research
institute, commercial company), have been found to im-
pact users’ willingness to disclose personal information [38].
Past research has also investigated how different types of
personal information are valued differently by users. For
example, amongst various types of data (i.e. application,
location, communication), location data has been found to
be the most valuable to users [40].

Within the automotive domain, there has been prior work
on automotive activity recognition, for example using capac-
itive proximity sensing [4], that does not rely on collecting
highly personal user data. Other work addresses the pri-
vacy implications of accelerometer data, where geographic
tracking of drivers becomes possible using only a phone’s
accelerometer sensor [18]. However, there is still no sys-
tematic analysis of how and when drivers and passengers
willing to share their personal, biometric data, in exchange
for a better in-vehicle trip experience.

Methods

Open card sorting
Open card sorting is a widely-used method (in web design)
to create taxonomies based on users’ groupings of the con-
tent. Importantly, it can be effective for discovering the op-
timal organization of information according to users’ view-
points [48]. Furthermore, it has been shown to have high
cross-study reliability [16]. Since we are concerned with
biometric technologies and perceived identification accu-
racy, card sorting is a suitable method to better understand
how users cluster physical, behavioral and physiological
features that such technologies can sense.

Card selection process
To understand how users perceive different biometric fea-
tures, we first collect a common, relevant set of features,
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# Card Example Technology Ref # Card Example Technology Ref
1 My face Face recognition (2D,3D) [31, 35] 21 My posture Posture recognition [33]
2 My facial expressions Facial emotion expression recognition [31, 5] 22 My media listening history Personalized music emotion recognition [49]
3 My ears Ear identification [25] 23 My media watching history Profiling TV viewers using data mining [39]
4 My eyes Eye tracking; iris and retina recognition [31] 24 My driving style Driver and driving style recognition [43]
5 My physical activity Physical activity recognition (ac-

celerometers)
[24] 25 My interaction patterns with an

in-car information system
Modelling driver IVIS interactions [12]

6 My fingerprints Fingerprint recognition [31, 35] 26 My SMS messages User classification based on SMS mes-
sages

[14]

7 My walking style Gait recognition [31] 27 My locations on a given day Location tracking [7]
8 My hands Hand geometry recognition (2D,3D);

Palm and finger vein recognition
[31, 35, 37] 28 My hand sweat Galvanic Skin Response for emotion

recognition
[23]

9 My sleeping patterns Sleep classification [21] 29 My hand gestures Hand gesture recognition [32]
10 My smell Odor recognition [31] 30 My electrical brain activity Electroencephalography; fNIRS [41, 36]
11 My handwriting Optical Character Recognition (OCR);

signature recognition
[26, 31, 8] 31 My breathing Breathing monitoring [30]

12 My touches on a smartphone
(e.g., movement, pressure, etc.)

Touchscreen dynamics [31] 32 My genetic makeup DNA matching [31]

13 My mouse movements Mouse movement dynamics [31] 33 My muscle movements Electromyography motion classification [29]
14 My typing on a keyboard Keystroke recognition [31] 34 My personality Personality classification [9]
15 My voice Speaker identification, verification,

authentication
[10, 35] 35 My eye gaze patterns Eye tracking and user identification [31, 13]

16 My teeth Teeth recognition [19] 36 My driving route Personalized route recommendation [22]
17 My footprints Footprint (size and shape) recognition [28] 37 My company in a vehicle Person identification using social con-

nections
[47, 46]

18 My heartbeat Electrocardiogram - Heart Rate Vari-
ability

[31] 38 My body temperature Thermal imaging [1]

19 My writing style Stylometry [31] 39 My eating style Eating episode classification (wearable
sensors)

[3]

20 My smartphone app usage App usage fingerprints [42] 40 My saliva Stress (from cortisol) recognition [17]

Table 1: Cards (features), example biometric technology, and citation. For this study, we only tested cards 1-32 (plus "My signature").

framed in an understandable manner. This means delib-
erately not mentioning the underlying biometric technol-
ogy, and instead only presenting the physical, behavioral
or physiological feature that a technology processes. For
example, to investigate facial recognition, we present par-
ticipants with the card "My face". Within an (automated)
driving context, the space of biometrics is quite vast [36].
We did an extensive literature search by querying the ACM
Digital Library and Google Scholar for papers published
on biometric techniques, across all contexts (automotive,
mobile, health, etc.). We then selected any biometrics that
could in principle be also used in an (automated) vehicle.
Our initial search resulted in 33 cards, which we test in this
study. Our ongoing search resulted in eight more features
(33-40)2, which we aim to test in a follow up study. All cards
are shown in Table 1. While not exhaustive, this list is suffi-
cient for investigating perceptions of common biometrics.

Figure 2: Set of sorted cards by a
participant.

2"My signature" was discarded, as explained later.

Procedure
Participants were tested in a lab environment, They were
provided with an information sheet, filled and signed a con-
sent and participant information form, then given a task
demonstration. They were provided with sorting instructions
on the desk (Figure 1). Instructions stated: “Please group
the cards into distinct sets by how accurately someone
can identify you using only the feature stated on a card.”
We deliberately did not constrain participants to consider
they were inside a vehicle for two reasons: (a) to gain a
general understanding of perceived identification accuracy
(b) to not burden participants to reflect on both automated
and non-automated driving. After they sorted the cards,
they were asked to label each group. There was no time
limit, nor a limit to the number of groups they can create.
Participants were encouraged to think aloud, and asked
to explain their final groupings. Each session was audio
recorded, and lasted approximately 10-30 min.
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Participants
We recruited 11 participants (6f, 5m), aged between 21-38
(M=25.6, SD=5.4)3. Eight were students, and the remainder
graduate-level or higher. Seven stated they had a technical
background. Three participants had driving experience,
two were learning how to drive, and the rest no experience.
Participants did not receive monetary compensation.

My.genetic.makeup
My.fingerprints

My.eyes
My.voice
My.face
My.teeth

My.locations.on.a.given.day
My.SMS.messages

My.smartphone.app.usage
My.media.watching.history
My.media.listening.history

My.mouse.movements
My.touches.on.a.smartphone

My.typing.on.a.keyboard
My.smell
My.ears

My.hands
My.signature

My.writing.style
My.handwriting
My.heartbeat
My.breathing

My.sleeping.patterns
My.hand.sweat

My.facial.expressions
My.hand.gestures
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My.posture
My.driving.style

My.interaction.patterns.with.IVIS
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My.physical.activity
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Figure 3: Dendrogram (k=6).

Figure 4: Screenshot of the closed
card sorting website.

Early Results and Discussion

Grouping, labeling, and task instructions
The mean group size created was 5.8 (SD=1.1). Given the
question we asked, participants largely created a ranked
list of groups, ranging from high (e.g., P2: "That’s me!"; P1:
"Bio features") to low perceived identification accuracy (P9:
"Things I do not or do almost the same as other people";
P5: "No one can identify me (not enough info)"). Overall,
participants’ labels were consistent, however differed by
grouping size. Given the range and mean group size, we
aim to test six categories for our future study.

To better understand how our cards were grouped, we used
Ward’s hierarchical agglomerative clustering method [27]
with k=6 clusters (creating six groups: G1-G6), where the
resulting dendrogram using Jaccard similarity is shown in
Figure 3. The dendrogram shows that some while groups
contain physical features (e.g., G1: genetic makeup, fin-
gerprints, eyes, ...), others are geared towards interactions
with technology (e.g., G3: mouse movements, touches on
smartphone, ...). The last grouping (G6) contains inconsis-
tent topics, where some are quite identifiable characteristics
of individuals (e.g., facial expressions), whereas others less
so (e.g., driving style). This leads us to consider adding
a "Not applicable" (N/A) category. Finally, one participant
raised the question of whether a person or machine is doing

3Age statistics are based on 10 participants only, as one participant
chose not to disclose their age.

the identification. Given this, we will adjust our future in-
structions to reflect a focus on machine (computer) sensing.

Ambiguous and redundant cards
Not all the cards were immediately understandable to par-
ticipants (e.g., P2 was confused by physical activity and
genetic makeup). Due to this, we need to provide addi-
tional examples (beyond what is listed in Table 1) to de-
crease ambiguity. P3 was unsure why we have cards for
"My face" and "My facial expressions" – while this may cre-
ate redundancy, we find it is better to maintain separation
with respect to the underlying recognition technology. More-
over, cultural factors were surfaced, for example concerning
writing style (P2: "In Chinese I have a very special writ-
ing style...when people see my homework, they know it is
me"). We also merged "My signature" with "My handwrit-
ing", which was found to be redundant. Finally, some cards
were deemed inapplicable, e.g., if participants did not have
driving experience (P9: "I can’t drive...kind of just eliminated
that") – this further necessitates an N/A category.

Next Steps

Our open card sort study findings helped shape a follow
up closed card sorting study, where we have built our own
online tool to collect closed card sort data (Figure 4). We
have modified our instructions and the number of closed
categories according to insights gathered. We also now in-
clude the complete 40 card list, and provide examples for
most cards to avoid ambiguity. Based on the closed card
sort data, we will choose the extreme ends of identifiability
categories, and use those for a follow up study on identify-
ing (automated) in-vehicle user experience privacy tradeoffs
(e.g., trading heartbeat data for alertness monitoring).
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