3,048 research outputs found

    Quantum theory of a polarization phase-gate in an atomic tripod configuration

    Full text link
    We present the quantum theory of a polarization phase-gate that can be realized in a sample of ultracold rubidium atoms driven into a tripod configuration. The main advantages of this scheme are in its relative simplicity and inherent symmetry. It is shown that the conditional phase shifts of order π\pi can be attained.Comment: X International Conference on Quantum Optics, Minsk, Belaru

    Effective boundary conditions for dense granular flows

    Full text link
    We derive an effective boundary condition for granular flow taking into account the effect of the heterogeneity of the force network on sliding friction dynamics. This yields an intermediate boundary condition which lies in the limit between no-slip and Coulomb friction; two simple functions relating wall stress, velocity, and velocity variance are found from numerical simulations. Moreover, we show that this effective boundary condition corresponds to Navier slip condition when GDR MiDi's model is assumed to be valid, and that the slip length depends on the length scale that characterises the system, \emph{viz} the particle diameter.Comment: 4 pages, 5 figure

    Polarization phase gate with a tripod atomic system

    Get PDF
    We analyze the nonlinear optical response of a four-level atomic system driven into a tripod configuration. The large cross-Kerr nonlinearities that occurr in such a system are shown to produce nonlinear phase shift of order π\pi. Such a substantial shift may be observed in a cold atomic gas in a magneto-optical trap where it coupl be fasibly exploited towards the realization of a polarization quantum phase gate. The experimental feasibility of such a gate is here examined in detail.Comment: Corrected versio

    Shear bands in granular flow through a mixing length model

    Full text link
    We discuss the advantages and results of using a mixing-length, compressible model to account for shear banding behaviour in granular flow. We formulate a general approach based on two function of the solid fraction to be determined. Studying the vertical chute flow, we show that shear band thickness is always independent from flowrate in the quasistatic limit, for Coulomb wall boundary conditions. The effect of bin width is addressed using the functions developed by Pouliquen and coworkers, predicting a linear dependence of shear band thickness by channel width, while literature reports contrasting data. We also discuss the influence of wall roughness on shear bands. Through a Coulomb wall friction criterion we show that our model correctly predicts the effect of increasing wall roughness on the thickness of shear bands. Then a simple mixing-length approach to steady granular flows can be useful and representative of a number of original features of granular flow.Comment: submitted to EP

    Ultrahigh sensitivity of slow-light gyroscope

    Get PDF
    Slow light generated by Electromagnetically Induced Transparency is extremely susceptible with respect to Doppler detuning. Consequently, slow-light gyroscopes should have ultrahigh sensitivity

    Driving the atom by atomic fluorescence: analytic results for the power and noise spectra

    Get PDF
    We study how the spectral properties of resonance fluorescence propagate through a two-atom system. Within the weak-driving-field approximation we find that, as we go from one atom to the next, the power spectrum exhibits both sub-natural linewidth narrowing and large asymmetries while the spectrum of squeezing narrows but remains otherwise unchanged. Analytical results for the observed spectral features of the fluorescence are provided and their origin is thoroughly discussed.Comment: 13 pages, 5 figures; to be published in Phys. Rev. A Changed title and conten

    Revisiting the Bragg reflector to illustrate modern developments in optics

    Get PDF
    Copyright © 2014 American Association of Physics TeachersA series of thin layers of alternating refractive index are known to make a good optical mirror over certain bands of frequency. Such a device, often termed the Bragg reflector, is usually introduced to students in isolation from other parts of the curriculum. Here, we show that the basic physics of wave propagation through a stratified medium can be used to illustrate some more modern developments in optics and quantum physics, from transfer matrix techniques to the optical properties of cold trapped atoms and optomechanical cooling. We also show a simple example of how such systems exhibit an appreciable level of optical nonreciprocity.Engineering and Physical Sciences Research Council (EPSRC)National Natural Science Foundation of ChinaNational Basic Research Program of ChinaCRUI-British CouncilAzione Integrata MIURFondo di Ateneo of Brescia Universit

    Adiabatic steering and determination of dephasing rates in double dot qubits

    Full text link
    We propose a scheme to prepare arbitrary superpositions of quantum states in double quantum--dots irradiated by coherent microwave pulses. Solving the equations of motion for the dot density matrix, we find that dephasing rates for such superpositions can be quantitatively infered from additional electron current pulses that appear due to a controllable breakdown of coherent population trapping in the dots.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Propagation of squeezed radiation through amplifying or absorbing random media

    Get PDF
    We analyse how nonclassical features of squeezed radiation (in particular the sub-Poissonian noise) are degraded when it is transmitted through an amplifying or absorbing medium with randomly located scattering centra. Both the cases of direct photodetection and of homodyne detection are considered. Explicit results are obtained for the dependence of the Fano factor (the ratio of the noise power and the mean current) on the degree of squeezing of the incident state, on the length and the mean free path of the medium, the temperature, and on the absorption or amplification rate.Comment: 8 pages, 4 figure
    • …
    corecore