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We analyze the nonlinear optical response of a four-level atomic system driven into a tripod configuration.
The large cross-Kerr nonlinearities that occur in such a system are shown to produce nonlinear phase shifts of
orderp. Such a substantial shift may be observed in a cold atomic gas in a magneto-optical trap where it could
be feasibly exploited towards the realization of a polarization quantum phase gate. The experimental feasibility
of such a gate is here examined in detail.
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I. INTRODUCTION

A great effort has recently gone into the search for prac-
tical architecture for quantum information processing sys-
tems. While most attention has been devoted toward theoret-
ical issues, several strategies have also been proposed for
experimental investigations. However, the laboratory de-
mand for building quantum information devices are quite
severe, requiring strong coupling betweenqubits, the quan-
tum carriers of information, in an environment with minimal
dissipation. For this reason experimental progress has so far
lagged behind the remarkable development that quantum in-
formation theory now witnesses[1].

Here we focus on optical implementations of quantum
information processing systems. Traveling optical pulses are
the natural candidates for the realization of quantum commu-
nication schemes and many experimental demonstrations of
quantum key distribution[2,3] and quantum teleportation
schemes[4–8] have been already performed. Optical sys-
tems have been also proposed for the implementation of
quantum computing, even though the absence of significant
photon-photon interactions is an obstacle for the realization
of efficient two-qubit quantum gates, which are needed for
implementing universal quantum computation[1]. Various
schemes have been proposed to circumvent this problem.
One is linear optics quantum computation[9], which is a
probabilistic scheme based on passive linear optical devices,
efficient single photon sources, and detectors, and which im-
plicitly exploits the nonlinearity hidden in the photodetection
process(see Refs.[10,11] for some preliminary demonstra-
tions of this scheme). Other schemes explicitly exploit opti-
cal nonlinearities for quantum gate implementations. Typical
optical nonlinearities are too small to provide a substantial
photon-photon interaction, hence limiting the usefulness of
an all-optical quantum gate. However, there seems to be a
way to overcome the problem. Quantum interference effects
associated with electromagnetically induced transparency

(EIT) [12–14] have quite recently been shown to enhance
these nonlinearities by as much as 10 orders of magnitude
[15]. This enhancement is commonly exhibited by a weak
probe beam in the presence of another strong coupling beam
when both impinge off-resonance on a three-level atomic
sample at very low temperatures.

The off-resonance condition is rather crucial to the obser-
vation of the enhancement and one can, in general, identify
two ways for attaining that. One is to introduce an additional
laser beam whose detuning from a fourth level is larger than
the level linewidth[16]. In this “N” configuration one of the
ground levels undergoes an ac-Stark shift which disturbs the
EIT resonance condition and induces an effective Kerr non-
linearity while keeping absorption negligible. Improvements
by many orders of magnitude with respect to conventional
nonlinearities have indeed been observed in this way[17]. In
addition, strong cross-phase modulation[16] and photon
blockade(i.e., strong self-phase modulation) have also been
predicted[18–22].

Another and related way to obtain large nonlinearities
consists in disturbing the exact two-photon resonance condi-
tion in a L configuration. This can be achieved by slightly
mismatching the probe and coupling field frequencies yet
remaining within the EIT transparency window making the
dispersion of the probe field not exactly zero. In this case
enhanced Kerr nonlinearities have been observed in theL
configuration[23,24] and predicted in the so-called chain-L
configurations[25–29]. By using this second approach Otta-
viani et al. [29] have shown that large cross-phase-
modulations that occur in an “M” configuration may lead to
an all-optical two-qubit quantum phase gate(QPG) [1,30],
where one qubit gets a phase shift dependent on the state of
the other qubit. Here, the key element enabling large cross-
phase modulation is the possibility of group velocity match-
ing. Large cross-phase modulations occur when two optical
pulses, aprobeand atrigger, interact for a sufficiently long
time. This happens when their group velocities are both
small and comparable[31,32] and there exists several ways
by which this can be done[29,31,33].

In this paper we propose an alternative phase gating
scheme that can greatly reduce, when compared with other*Email address: stojan.rebic@unicam.it
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schemes, the experimental effort for its realizability. As also
done in Ref.[29], the binary information is encoded in the
polarization degree of freedom of a probe and a trigger op-
tical pulse while the phase-gate mechanism relies on an en-
hanced cross-phase modulation effect which occurs in a rela-
tively simple and robust four atomic leveltripod
configuration. The scheme requires good control over fre-
quencies and intensities of the probe and trigger laser pulses.

Optical QPG have been already experimentally studied. A
conditional phase shiftf.16° between two frequency-
distinct high-Q cavity modes, due to the effective cross
modulation mediated by a beam of Cs atoms, has been mea-
sured in Ref.[34]. However, the complete truth table of the
gate has not been determined in this experiment. A condi-
tional phase shiftf.8° has been instead obtained between
weak coherent pulses, using a second-order nonlinear crystal
[35]. However, this experiment did not demonstrate abona
fideQPG becausef depends on the input states, and the gate
can be defined only for a restricted class of inputs.

The four-level tripod configuration that we adopt here has
been extensively studied in the past few years. For example,
Unanyanet al. [36] used a tripod configuration to achieve
stimulated Raman adiabatic passage(STIRAP) for creating
an arbitrary coherent superposition of two atomic states in a
controlled way. Paspalakiset al. [37–39], in particular, de-
veloped the interesting possibility of using a tripod scheme
for efficient nonlinear frequency generation. Moreover, it
was shown that the group velocity of a probe pulse may be
significantly reduced, as in the familiarL system[37]. The
work of Malakyan[40] was the first to suggest that the tripod
scheme may be used to entangle a pair of very weak optical
fields in an atomic sample. This work has been recently ex-
tended to the case of quantum probe and trigger fields in Ref.
[41], where an adiabatic treatment similar to that of Ref.[31]
is adopted.

The purpose of this paper is thus twofold. First, we adopt
a standard density-matrix approach, including spontaneous
emission and dephasings, to analyse the nonlinear optical
response of a four-level tripod configuration. In particular,
we examine the conditions under which large cross-Kerr
nonlinearities may occur in a cold atomic sample. Second,
we study the possibility of employing such an enhanced
cross-phase-modulation to devise a polarization phase-gating
mechanism which turns out to be rather robust and apt to
actual experimental investigations.

The paper is organized as follows. In Sec. II, dressed
states of the atomic tripod are analyzed and their significance
emphasized. In Sec. III, we solve the set of Bloch equations
and derive expressions for linear and nonlinear susceptibili-
ties. In Sec. IV group velocity matching is discussed in de-
tail, while Sec. V discusses the operation of a polarization
phase gate. We summarize our results in Sec. VI.

II. DRESSED STATES OF THE TRIPOD SYSTEM

The tripod configuration as shown in Fig. 1 enables one to
achieve a giant cross-phase-modulation between probe and
trigger fields. Here transitionsu1l→ u0l and u3l→ u0l are
driven by a probe and trigger fields of respective Rabi fre-

quenciesVP andVT, while the transitionu2l→ u0l is driven
by a control field of Rabi frequencyV. Moreover,d j =v0

−v j −v j
sLd denote the laser(frequencyv j

sLd) detunings from
the respective transitionsu jl↔ u0l. In the interaction picture
and in the dipole and rotating wave approximations the tri-
pod Hamiltonian is given by

Hint = "d1s00 + "sd1 − d2ds22 + "sd1 − d3ds33 + "sVP
* s10

+ VPs01d + "sV*s20 + Vs02d + "sVT
* s30 + VTs03d,

s1d

wheresi j = uilk j u are pseudospin atomic operators. Spontane-
ous emission and dephasing are not relevant at this stage but
will be added[42] later in Eqs.(4) below.

Minimal conditions required for the generation of such a
large nonlinear effect can be assessed through a straightfor-
ward analysis in terms of dressed states which we here
briefly outline. When the three detunings are equal, i.e.,di
=d si =1,2,3d, two of the four eigenstates of Hamiltonian(1)
[36], namely

ue±l =
VPu1l ± u0l + VTu3l + Vu2l

ÎVP
2 + V2 + VT

2
, s2d

have energiesd±Îd2+VP
2 +V2+VT

2, while the other two
with equal energyd are degenerate and acquire the form
(written here for a special cased=0),

ue1l =
VTu1l − VPu3l

ÎVP
2 + VT

2
, s3ad

ue2l =
VVPu1l + VVTu3l − sVP

2 + VT
2du2l

ÎsVP
2 + VT

2dsVP
2 + V2 + VT

2d
. s3bd

These two are dark states as neither of them contains contri-
butions from the excited stateu0l. Notice, in addition, that for
different detunings the two dark states are no longer degen-
erate as their energies become, respectively,d2 andd3.

Necessary conditions for achieving a large cross-Kerr
phase shift can be formulated as follows:(i) probe and trig-
ger must be tuned to dark states,(ii ) the transparency fre-

FIG. 1. Energy level scheme for a tripod. Probe and trigger
fields have Rabi frequenciesVP and VT and polarizationss+ and
s−. The pump Rabi frequency isV while d j =v0−v j −v j

sLd denote
the laser(frequencyv j

sLd) detunings from the respective transitions
u jl↔ u0l.
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quency window for each of these dark states has to be nar-
row and with a steep dispersion to enable significant group
velocity reduction, and finally(iii ) there must be a degree of
symmetry between the two transparency windows so that
trigger and probe group velocities can be made to be equal
[29,31,33]. These conditions can be satisfied by taking all
three detunings nearly equal. By slightly departing from the
exact resonance condition, in fact, and for frequency mis-
matches within the transparency window, strong cross-Kerr
modulations along with group velocity matching can be
achieved. This, as we will show below, will enable us to
realize an efficient phase-gate operation. It is also worth no-
ticing that for perfectly equal detunings degeneracy leads to
a common transparency window for both fields; in this case
the nonlinear susceptibility contributions in Eqs.(9) vanish
and our tripod system becomes linear.

III. BLOCH EQUATIONS AND SUSCEPTIBILITIES

The Bloch equations for the density matrix elements(in-
cluding atomic spontaneous emission and dephasing) are

i ṙ00 = − isg11 + g22 + g33dr00 + VP
* r10 − VPr01 + V*r20

− Vr02 + VT
* r30 − VTr03, s4ad

i ṙ11 = ig11r00 + ig12r22 + ig13r33 + VPr01 − VP
* r10,

s4bd

i ṙ22 = ig22r00 − ig12r22 + ig23r33 + Vr02 − V*r20, s4cd

i ṙ33 = ig33r00 − isg13 + g23dr33 + VTr03 − VT
* r30, s4dd

i ṙ10 = − D10r10 + VPr00 − VPr11 − Vr12 − VTr13, s4ed

i ṙ20 = − D20r20 + Vr00 − Vr22 − VPr21 − VTr23, s4fd

i ṙ30 = − D30r30 + VTr00 − VPr33 − VPr31 − Vr32, s4gd

i ṙ12 = − D12r12 + VPr02 − V*r10, s4hd

i ṙ13 = − D13r13 + VPr03 − VT
* r10, s4id

i ṙ23 = − D23r23 + Vr03 − VT
* r20, s4jd

whereri j =Trhs jirj=ki uru jl. Decay ratesgi j describe decay of
populations and coherences,D j0=d j + ig j0 and Di j =d j −di
− igi j , with i , j =1,2,3.

We consider the steady-state solutions to the Bloch equa-
tions. When the intensity of the pump field is stronger than
the intensity of both probe and triggeruVu2@ uVP,Tu2, and the
detunings and decay rates are of the same order of magni-
tude, the stationary population distribution will be symmetric
with respect to the 1↔3 exchange, i.e.,r11<r33<1/2, with
the population of the other two levels vanishing. Note that
this is an assumption on steady-state populations only, not
the choice of particular dressed state. It is also consistent

with the numerical solution of the full set of Bloch equations
(4).

This population assumption allows to decouple the equa-
tions for the populations from those of the coherences and to
obtain the steady-state solution for the latter, yielding the
probe and trigger susceptibilities according to

xP = − lim
t→`

NumPu2

"e0

r10std
VP

, s5ad

xT = − lim
t→`

NumTu2

"e0

r30std
VT

, s5bd

whereN is the atomic density andmP,T the electric dipole
matrix elements for probe and trigger transitions, respec-
tively. Rabi frequencies are defined in terms of electric-field
amplitudesEP,T as VP,T=−smP,T·«P,TdEP,T/", with «P,T be-
ing the polarization unit vector of probe and trigger beams.
The resulting general expression for the steady-statesssd
probe and trigger susceptibilities are obtained from

sr10dss

VP
= S1 +

1

4

sD12D23/D13
2 duVPu2uVTu2

sD10D12 − uVu2dsD30
* D23 − uVu2d

D−1

3H−
1

2

D12D13

D10D12D13 − D13uVu2 − D12uVTu2

−
1

2

D12D13D23uVTu2

D30
* D13D23 − D13uVu2 − D23uVPu2J , s6ad

sr30dss

VT
= S1 +

1

4

sD23
* D12

* /D13
*2duVPu2uVTu2

sD30D23
* − uVu2dsD10

* D12
* − uVu2d

D−1

3H−
1

2

D23
* D13

*

D30D23
* D13

* − D13
* uVu2 − D23

* uVPu2

−
1

2

D23
* D13

* D12
* uVPu2

D10
* D13

* D12
* − D13

* uVu2 − D12
* uVTu2J . s6bd

We are interested in the cross-phase-modulation between the
probe and trigger fields. Therefore, we keep the two lowest
order contributions in trigger and probe: linear and third-
order nonlinear susceptibilities, while neglecting the higher
orders in the expansion. This yields

xP = xP
s1d + xP

s3duETu2, s7ad

xT = xT
s1d + xT

s3duEPu2, s7bd

that is, each susceptibility has a linear and a cross-Kerr non-
linear term, while self-phase modulation terms are of higher
order. Both susceptibilities have a linear contribution be-
cause of the nonzero stationary population in levelsu1l and
u3l. Linear susceptibilities are given by

xP
s1d =

NumPu2

"e0

1

2

D12

D10D12 − uVu2
, s8ad
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xT
s1d =

NumTu2

"e0

1

2

D23
*

D30D23
* − uVu2

, s8bd

where the factor 1/2 in each equation comes from the sym-
metric steady-state population distribution. The cross-Kerr
susceptibilities are instead given by

xP
s3d = N umPu2umTu2

"3e0

3
1

2

D12/D13

D10D12 − uVu2

3S D12

D10D12 − uVu2
+

D23

D30
* D23 − uVu2D , s9ad

xT
s3d = N umTu2umPu2

"3e0

3
1

2

D23
* /D13

*

D30D23
* − uVu2

3S D12
*

D10
* D12

* − uVu2
+

D23
*

D30D23
* − uVu2

D . s9bd

Note that Eqs.(8) and also Eqs.(9) are completely symmet-
ric with respect to the 1↔3 exchange.1 This exchange sym-
metry is ensured by the complex conjugate terms in Eqs.(8b)
and (9b) and it is expected because of the symmetry of the
population distribution. Note also that in the absence of
dephasing, the nonlinear susceptibility has a singularity at
d1=d3. The necessary regularization is provided by a non-
zero dephasing termig13.

Paspalakis and Knight[37] have recently analyzed the
properties of the tripod system in a somewhat different setup.
It is nevertheless instructive to compare the results of this
section with theirs. In the scheme of Ref.[37], population is
assumed to be initially in the ground stateu1l. Provided that
uVPu2! uVu2, uVTu2 population remains inu1l in the steady
state. Paspalakis and Knight calculate the expression for
probe susceptibility to the first order inVP. It is easy to see
that their expression is consistent(up to a factor 1/2 deter-
mined by the different population distribution) to our result
in Eq. (6a): considering only terms to the first order inVP
leaves only the first term in the curly brackets of Eq.(6b).
Additional terms in Eqs.(6) arise because we are looking for
a cross-Kerr nonlinearity in both probe and trigger, so that all
the terms of third order have to be included. We also note
that it is the manipulation of eigenstateue1l [Eq. (3a)] that is
responsible for parametric processes of Refs.[37–39].

IV. GROUP VELOCITY MATCHING

The linear and nonlinear susceptibilities of Eqs.(8) and
(9) have all the properties required for a large cross-phase
modulation. In fact, our tripod system can be seen as formed
by two adjacentL systems, one involving the probe field and
one involving the trigger field, sharing the same control field.
Therefore both fields exhibit EIT, which here manifests itself
through the presence of two generally distinct transparency
windows, corresponding to the two dark states of Eq.(3).
Perfect EIT for both fields takes place when the two trans-

parency windows coincide, i.e., when the two dark states are
degenerate, which is achieved when the three detuningsdi
are all equal. In this case, all physical effects related to stan-
dard EIT are present and in particular the steep dispersion
responsible for the reduction of the group velocity which is
at the basis of the giant cross-Kerr nonlinearity(see Fig. 2).
The condition of equal detunings(exact double EIT-
resonance condition) is important also for another reason. In
fact, together with the symmetry of Eqs.(8) and (9) with
respect to the 1↔3 exchange, it also guarantees identical
dispersive properties for probe and trigger and therefore the
same group velocity. As first underlined by Lukin and Ima-
moğlu [31], group velocity matching is another fundamental
condition for achieving a large nonlinear mutual phase shift
because only in this way the two optical pulses interact in a
transparent nonlinear medium for a sufficiently long time.

The group velocity of a light pulse is given in general by
vg=c/ s1+ngd, wherec is the speed of light in vacuum and

ng =
1

2
Refxg +

v0

2
S ] Refxg

] v
D

v0

s10d

is the group index,v0 being the laser frequency. The group
index of Eq.(10) is essentially determined by the linear sus-
ceptibility xs1d, because contributions from the nonlinear

1The full symmetry also requiresumTu2= umPu2, which is fulfilled
for the proposed87Rb scheme, see Sec. V.

FIG. 2. Probe absorption and dispersionxsd1d
="e0xP/ sNumPu2d=sr10/VPdssfg−1g (upper frame) vs the probe de-
tuning d1/g when d3=0.1g and d2=0.1g. Trigger absorption and
dispersionxsd3d="e0xT/ sNumTu2d=sr30/VTdssfg−1g (lower frame)
vs the trigger detuningd3/g when d1=0.1g and d2=0.1g. In both
cases we take the Rabi frequencies asVP=VT=0.1g, V=g.
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terms are orders of magnitude smaller and can be neglected.
Using Eqs.(8), it is possible to get a simple expression for
the two group velocities in the case of equal detunings. This
condition corresponds to the center of the transparency win-
dow for each field, where Refxs1dg vanishes, and the group
velocity is reduced due to a large dispersion gradient. One
has

svgdP <
4"ce0

vPNumPu2
suVu2 + uVTu2d, s11ad

svgdT <
4"ce0

vTNumTu2
suVPu2 + uVu2d, s11bd

so that, as expected from the 1↔3 symmetry, group velocity
matching is achieved foruVPu= uVTu.

Unfortunately, it is possible to check from Eqs.(9) that
when di =d, ∀i exactly, the system becomes linear, i.e., the
real part of the nonlinear susceptibilities vanish and there is
no cross-phase modulation. This means that we have to “dis-
turb” the exact EIT resonance conditions, by taking slightly
different detunings. This is a general conclusion, valid for
any atomic level scheme resembling multipleL systems
[26–29]. If the double EIT-resonance condition is disturbed
by a small amount, one remains within the common trans-
parency window and the absorption is still negligible. More-
over, the two group velocities can be matched also in the
nonresonant case. In fact, from the symmetry of Eqs.(8), one
has that the gradients—and hence the group velocities—can
be kept symmetric and all the conclusions for the exact reso-
nance remain valid in the vicinity of resonance as well.

V. PHASE GATE OPERATION

A significant cross-phase-modulation is the key ingredient
for the implementation of a quantum phase gate between two
optical qubits. Such a cross-phase-modulation could be real-
ized exploiting the cross-Kerr effect whereby an optical field
acquires a phase shift conditioned to the state of another
optical field. The relevant gate transformation is defined
through the following input-output relationsuil1u jl2
→exphifi jjuil1u jl2, wherei , j =0,1 denote the qubit basis. In
particular, this becomes a universal two-qubit gate, that is a
gate able to entangle two initially factorized qubits, when the
conditional phase shiftf=f11+f00−f10−f01 becomes dif-
ferent from zero[1,30,34].

A natural choice for encoding binary information in opti-
cal beams consists in using the polarization degree of free-
dom, in which case the two logical basis statesu0l andu1l of
the above gate transformation correspond to two orthogonal
light polarizations. A possible experimental implementation
can be realized with the tripod scheme discussed above by
using 87Rb atoms confined in a temporal dark SPOT
(spontaneous-force optical trap). This is a magneto-optical
trap(MOT) where the repumping beam has been temporarily
shut off [43]. In such a trap cold atoms are transferred in the
u5S1/2,F=1,m=h−1,0,1jl state(s) of 87Rb while density is
increased with respect to a conventional MOT. In this case
statesu1l, u2l, andu3l correspond to the ground-state Zeeman

sublevels u5S1/2,F=1,m=h−1,0,1jl, and stateu0l corre-
sponds to the excited stateu5P3/2,F=0l. The atoms are avail-
able for just a few milliseconds which is long compared with
the typical microsecond time scales involved in our proposed
experiment.

A universal QPG could be implemented when a signifi-
cant and nontrivial cross-phase-modulation between probe
and trigger fields arises but only for one of the four input
probe and trigger polarization configurations. This occurs for
our tripod configuration of Fig. 1 only when the probe iss+

polarized and the trigger iss− polarized. When the probe has
instead as− polarization [Eq. (18a)], that is to say the
“wrong” polarization, there is no sufficiently close level it
may couple to and hence the corresponding pulse will ac-
quire the trivial(vacuum) phase shiftf0

P=kPl, wherel is the
length of the medium. The trigger pulse with the “correct”s−

polarization, on the other hand, will acquire in this case the
linear phase shift

flin
T = kTls1 + 2pxT

s1dd. s12d

It is worth noticing here that for sufficiently narrow probe
and trigger laser linewidths and nearly equal detunings as
used in our scheme, cross-phase modulation between the two
s− polarized probe and trigger pulses[Eq. (18a)] does not
occur for sublevels Zeeman shifts larger than(half) the EIT
transparency bandwidth. Owing to the fact that such a band-
width is typically smaller thang (,0.1g in our case), cross-
Kerr nonlinearities for the case of a wrong probe polarization
[Eq. (18a)] can readily be avoided for sufficiently large Zee-
man splittings.2 Such a splitting should further be chosen so
as to make as− polarized probe transparent[44], namely, by
making it falling outside the absorption profile of both trig-
ger transition(see Figs. 2 and 3) and any other nearby reso-
nance. For the specific rubidium levels configuration that we
examine below, Zeeman shifts of about 20–30g should be
appropriate to avoid simultaneous absorption and cross-Kerr
nonlinearities of a wrongly polarized probe.3 The correct
shift to be used would clearly depend on the value of the
probe and trigger detunings.4 The case of a wrongs+ polar-
ized trigger[Eq. (18c)] can be discussed in just the same way
leading to a vacuum shiftf0

T and to a linear shiftflin
P which

obtain from thef0
P andflin

T above upon interchangingP↔T.
When probe and trigger both have the “wrong” polarization,
i.e., the probe iss− polarized and the trigger iss+ polarized,
there is no sufficiently close level to which probe and trigger

2Right and wrong polarizations are distinguished by their frequen-
cies so even when as− polarized probe, e.g., couples to theu3l
→ u0l transition, it would fall outside the trigger transparency win-
dow already for Zeeman splittings of fewg’s yielding no cross-Kerr
modulation.

3For typical Zeeman splittings of 0.13g /G, magnetic fields of the
order of 150–250 G are here required. These field strengths are
common in recent cold atoms experiments.

4Because symmetryu5P3/2,F=2,m=0l, lying about 26g above
the level u0l, is the nearest resonant level to which a wrong probe
could couple to, the two detuning cases which we examine in our
predictions, namelyd1.d3.10g andd1.d3.20g, would require,
respectively, Zeeman splittings of about 20g and 30g.
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can be coupled to and the fields acquire the trivial vacuum
phase shiftf0

j =kjl, j =P,T.
A probe and a trigger polarized single photon wave pack-

ets form a qubit[29]

ucil = ai
+us+li + ai

−us−li, i = hP,Tj. s13d

This qubit is a superposition of two circularly polarized
states

us±li =E dvjisvda±
†svdu0l, s14d

wherejisvd is a Gaussian frequency distribution of incident
wave packets, centered at frequencyvi. Traversing the
atomic medium of lengthl, the photon field operator under-
goes a transformation

a±svd → a±svdexpHi
v

c
E

0

l

dz n±sv,zdJ . s15d

The real part of the refractive indexn± can be assumed to
vary slowly over the bandwidth of the wave packets
n±sv ,zd<n±svi ,zd, giving rise to a phase shift on a circu-

larly polarized statesus±li →e−if±
i
us±li, where

f±
i =

v

c
E

0

l

dz n±svi,zd. s16d

For a Gaussian trigger pulse of time durationtT and Rabi
frequencyVT, moving with group velocityvg

T, the nonlinear
probe phase shift can be written as

fnlin
P = kPl

p3/2"2uVTu2

4umTu2
erffzPg

zP
RefxP

s3dg, s17ad

wherezP=s1−vg
P/vg

TdÎ2l /vg
PtT. The trigger shift is obtained

upon interchangingP↔T in the equation above, namely

fnlin
T = kTl

p3/2"2uVPu2

4umPu2
erffzTg

zT
RefxT

s3dg, s17bd

where also the expression forzT has to be changed accord-
ingly.

The truth table for a polarization QPG that uses our tripod
configuration reads as

us−lPus−lT → e−isf0
P+flin

T dus−lPus−lT, s18ad

us−lPus+lT → e−isf0
P+f0

Tdus−lPus+lT, s18bd

us+lPus+lT → e−isflin
P +f0

Tdus+lPus+lT, s18cd

us+lPus−lT → e−isf+
P+f−

Tdus+lPus−lT, s18dd

with f+
P=flin

P +fnlin
P and f−

T=flin
T +fnlin

T and where the con-
ditional phase shifts given by

f = f+
P + f−

T − flin
P − flin

T . s19d

Notice that only the nonlinear shifts contribute tof. The
truth table of Eqs.(18) differs from that of Ottavianiet al.
[29] only for the presence of a linear phase shift for the
trigger, arising from the fact that also levelu3l is populated
with one-half of the atoms.

In the 87Rb level configuration chosen above, the decay
rates are equalg j0=g and we take for simplicity equal and
small dephasing ratesgi j .gd=10−2g. For VP<VT=0.1g,
V=g, and detuningsd1=20.01g, d2=20g, d3=20.02g we
obtain a conditional phase shift ofp radians over an interac-
tion length l =1.6 mm at a densityN=331013 cm−3. With
these parameters, group velocities are essentially the same,
giving erffzPg /zP=erffzTg /zT<2/Îp. This choice of param-
eters corresponds to the case where probe and trigger have a
mean amplitude of about one photon when the beams are
tightly focuseds,1 mmd and with a time duration in the
microsecond scale.

In addition, it is worth noting that a classical phase gate
could be implemented by using more intense probe and trig-
ger pulses. For Rabi frequenciesVP<VT=g, V=4.5g, and
detuningsd1=10.01g, d2=10g, d3=10.02g, a conditional
phase shift of p radians, over the interaction lengthl
=0.7 cm, densityN=331012 cm−3 is obtained. Again, with
these parameters, group velocities are the same. Probe and
trigger susceptibilities corresponding to these parameter val-
ues are shown in Fig. 3.

FIG. 3. Probe absorption and dispersionxsd1d
="e0xP/ sNumPu2d=sr10/VPdssfg−1g (upper frame) vs the probe de-
tuning d1/g whend3=10.02g andd2=10g. Trigger absorption and
dispersionxsd3d="e0xT/ sNumTu2dsr30/VTdssfg−1g (lower frame) vs
the trigger detuningd3/g when d1=10.01g and d2=10g. In both
cases we take the Rabi frequencies asVP=VT=g, V=4.5g.
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Both sets of parameters could be realized with cold atoms
in a temporal dark SPOT of a MOT. Alternatively, a gas cell
of standard length between 2.5 and 10 cm can be considered,
but the increase in length is then compensated with a lower
density. In this case one has to take care to use all co-
propagating laser beams to cancel the first order Doppler
effect [13]. This shows that a demonstration of a determinis-
tic polarization QPG can be made using present technolo-
gies.

As discussed above, we had to move away from the exact
double EIT-resonance condition in order to have nonvanish-
ing nonlinearities. Yet, under such condition the linear sus-
ceptibilities are not small and actually their contribution is
dominant. The nonlinear-linear phase shift ratios are in fact
given by

fP
nlin

fP
lin =

uVTu2

4
3 ReF 1

D13
S D12

D10D12 − uVu2
+

D23

D30
* D23 − uVu2DG ,

s20ad

fT
nlin

fT
lin =

uVPu2

4
3 ReF 1

D13
* S D12

D10
* D12

* − uVu2
+

D23
*

D30
* D23

* − uVu2
DG ,

s20bd

which turn out to be of the order,1/43 for the first(quan-
tum) set of parameters and,1/64 for the second(semiclas-
sical) set of parameters. This means that under the optimal
conditions corresponding to ap conditional phase shift, the
total phase shift in each input–output transformation is very
large, of the order of 45p and 65p, respectively.

The experimental demonstration of our QPG mechanism
relies on the precision with which conditional phase shifts
can be determined and hence it is important to work with
small errors in the measurement of a phase difference. These
errors mainly originate from fluctuations of the laser intensi-
ties and detunings. In particular, 1% intensity fluctuations
yield an error of about 4% on the value of the phase. Fluc-
tuations of the relative detuning can be instead overcome by
taking all lasers tightly phase locked to each other. Other
important sources of error include dephasing of the ground-
state coherences, whose main effect is to induce absorption.
Non-negligible absorption implies a nonzero gate failure
probability (one or both qubits missing at the output) making
therefore the present quantum gate, which is deterministic in
principle, a probabilistic gate. Figure 4 shows that for typi-
cally small dephasingsgd/2p,10 kHz, or gd,10−2g, the
degree of absoprtion remains still fairly low. It should be

mentioned that this holds forV,g, while for weaker control
fields even smaller dephasings are required to keep absorp-
tion negligible.

VI. CONCLUSION

In this paper we have studied the nonlinear response of a
four-level atomic sample in a tripod configuration to an in-
cident probe and trigger field. The resulting large cross-Kerr
modulation between probe and trigger enables one to imple-
ment a phase gate with a conditional phase shift of the order
of p. The main advantage of our proposal lies in its experi-
mental feasibility which has been assessed through a detailed
study of the requirements needed to observe such a large
shift in a cold atomic sample of87Rb atoms.
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