We discuss the advantages and results of using a mixing-length, compressible
model to account for shear banding behaviour in granular flow. We formulate a
general approach based on two function of the solid fraction to be determined.
Studying the vertical chute flow, we show that shear band thickness is always
independent from flowrate in the quasistatic limit, for Coulomb wall boundary
conditions. The effect of bin width is addressed using the functions developed
by Pouliquen and coworkers, predicting a linear dependence of shear band
thickness by channel width, while literature reports contrasting data. We also
discuss the influence of wall roughness on shear bands. Through a Coulomb wall
friction criterion we show that our model correctly predicts the effect of
increasing wall roughness on the thickness of shear bands. Then a simple
mixing-length approach to steady granular flows can be useful and
representative of a number of original features of granular flow.Comment: submitted to EP