157 research outputs found

    Aquatic Invasive Species as Hazards on Water Resources and Ecosystems in Texas

    Get PDF
    Water losses due to invasive species cost Texas hundreds of thousands of acre feet of water per year, water unavailable for instream flows, irrigation and other human uses. Innovative, proactive ecological research and public and policy awareness and education initiatives are instrumental to preventing further invasions and managing existing exotic species impacts in Texas aquatic ecosystems

    What is the relationship between relational security, attachment, ward incidents and treatment outcomes on forensic psychiatric wards?

    Get PDF
    A systematic literature review summarizes what is known about the relationships between attachment, relational security and therapeutic relationships. A paucity of research with forensic populations is noted. Consequently the empirical research paper explores more systematically the relationships between these variables on forensic psychiatric wards. Suggestions for staff and service development are presented. No relationships were found between relational security and service users’ attachment to the service and between relational security and risk events and treatment outcomes. Additional analyses revealed that relational security and ward atmosphere were moderately correlated. A large positive correlation was found between patients’ attachment to the service and ward atmosphere, and a moderate, negative, relationship was found between patients’ attachment to the service and risk incidents Multiple regression revealed that relational security and ward atmosphere significantly predicted patients’ attachment to the service. More robust research is needed to investigate the relationships between attachment, relational security, risk incidents and treatment outcomes on forensic psychiatric wards. An argument is made for promoting stronger therapeutic relationships between staff and service users so that forensic wards can become closer to secure bases which might help clients to overcome past interpersonal traumas and develop safer ways to relate interpersonally

    Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa

    Get PDF
    1. Heterotrophic microorganisms are crucial for mineralising leaf litter and rendering it more palatable to leaf-shredding invertebrates. A substantial part of leaf litter entering running waters may be buried in the streambed and thus be exposed to the constraining conditions prevailing in the hyporheic zone. The fate of this buried organic matter and particularly the role of microbial conditioning in this habitat remain largely unexplored. 2. The aim of this study was to determine how the location of leaf litter within the streambed (i.e. at the surface or buried), as well as the leaf litter burial history, may affect the leaf-associated aquatic hyphomycete communities and therefore leaf consumption by invertebrate detritivores. We tested the hypotheses that (i) burial of leaf litter would result in lower decomposition rates associated with changes in microbial assemblages compared with leaf litter at the surface and (ii) altered microbial conditioning of buried leaf litter would lead to decreased quality and palatability to their consumers, translating into lower growth rates of detritivores. 3. These hypotheses were tested experimentally in a second-order stream where leaf-associated microbial communities, as well as leaf litter decomposition rates, elemental composition and toughness, were compared across controlled treatments differing by their location within the streambed. We examined the effects of the diverse conditioning treatments on decaying leaf palatability to consumers through feeding trials on three shredder taxa including a freshwater amphipod, of which we also determined the growth rate. 4. Microbial leaf litter decomposition, fungal biomass and sporulation rates were reduced when leaf litter was buried in the hyporheic zone. While the total species richness of fungal assemblages was similar among treatments, the composition of fungal assemblages was affected by leaf litter burial in sediment. 5. Leaf litter burial markedly affected the food quality (especially P content) of leaf material, probably due to the changes in microbial conditioning. Leaf litter palatability to shredders was highest for leaves exposed at the sediment surface and tended to be negatively related to leaf litter toughness and C⁄P ratio. In addition, burial of leaf litter led to lower amphipod growth rates, which were positively correlated with leaf litter P content. 6. These results emphasise the importance of leaf colonisation by aquatic fungi in the hyporheic zone of headwater streams, where fungal conditioning of leaf litter appears particularly critical for nutrient and energy transfer to higher trophic levels

    AML alters bone marrow stromal cell osteogenic commitment via Notch signaling

    Get PDF
    IntroductionAcute myeloid leukemia (AML) is a highly heterogeneous malignancy caused by various genetic alterations and characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). This abnormal growth of AML cells disrupts normal hematopoiesis and alters the BM microenvironment components, establishing a niche supportive of leukemogenesis. Bone marrow stromal cells (BMSCs) play a pivotal role in giving rise to essential elements of the BM niche, including adipocytes and osteogenic cells. Animal models have shown that the BM microenvironment is significantly remodeled by AML cells, which skew BMSCs toward an ineffective osteogenic differentiation with an accumulation of osteoprogenitors. However, little is known about the mechanisms by which AML cells affect osteogenesis.MethodsWe studied the effect of AML cells on the osteogenic commitment of normal BMSCs, using a 2D co-culture system.ResultsWe found that AML cell lines and primary blasts, but not normal hematopoietic CD34+ cells, induced in BMSCs an ineffective osteogenic commitment, with an increase of the early-osteogenic marker tissue non-specific alkaline phosphatase (TNAP) in the absence of the late-osteogenic gene up-regulation. Moreover, the direct interaction of AML cells and BMSCs was indispensable in influencing osteogenic differentiation. Mechanistic studies identified a role for AML-mediated Notch activation in BMSCs contributing to their ineffective osteogenic commitment. Inhibition of Notch using a Îł-secretase inhibitor strongly influenced Notch signaling in BMSCs and abrogated the AML-induced TNAP up-regulation.DiscussionTogether, our data support the hypothesis that AML infiltration produces a leukemia-supportive pre-osteoblast-rich niche in the BM, which can be partially ascribed to AML-induced activation of Notch signaling in BMSCs

    Leaf-associated fungal diversity in acidified streams: insights from combining traditional and molecular approaches

    Get PDF
    We combined microscopic and molecular methods to investigate fungal assemblages on alder leaf litter exposed in the benthic and hyporheic zones of five streams across a gradient of increasing acidification for 4 weeks. The results showed that acidification and elevated Al concentrations strongly depressed sporulating aquatic hyphomycetes diversity in both zones of streams, while fungal diversity assessed by denaturing gradient gel electrophoresis (DGGE) appeared unaffected. Clone library analyses revealed that fungal communities on leaves were dominated by members of Ascomycetes and to a lesser extent by Basidiomycetes and Chytridiomycetes. An important contribution of terrestrial fungi was observed in both zones of the most acidified stream and in the hyporheic zone of the reference circumneutral stream. The highest leaf breakdown rate was observed in the circumneutral stream and occurred in the presence of both the highest diversity of sporulating aquatic hyphomycetes and the highest contribution to clone libraries of sequences affiliated with aquatic hypho- mycetes. Both methods underline the major role played by aquatic hyphomycetes in leaf decom- position process. Our findings also bring out new highlights on the identity of leaf-associated fungal communities and their responses to anthropogenic alteration of running water ecosystems

    Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown.

    Get PDF
    Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species

    Two microcrustaceans affect microbial and macroinvertebrate-driven litter breakdown

    Get PDF
    1. Leaf litter degradation in fresh waters is a fundamental ecosystem process performed by a wide array of decomposers. The meiofauna is an important component of aquatic heterotrophic assemblages, which can provide a trophic link between plant detritus and associated microbial and macroinvertebrate communities, but their contribution to leaf breakdown remains poorly understood. 2. We hypothesised that, through their feeding activity, microcrustaceans influence the structure of fungal assemblages and consequently microbially mediated litter breakdown. Litter-associated microcrustaceans were predicted to change the pathways of energy transfer in the food web according to the positive (e.g. complementarity) or negative (e.g. predation) interactions with macroinvertebrate detritivore taxa. 3. We evaluated experimentally in the laboratory, over 6 and 13 days, the potential contribution of two freshwater microcrustaceans (a cladoceran and a copepod) to litter breakdown in the presence of microfungi (aquatic hyphomycetes), with and without macroinvertebrate detritivores (a trichopteran and a gammarid amphipod). 4. The presence of microcrustaceans enhanced leaf mass loss by 62 and 22% in treatments with fungi or trichopteran alone, respectively, while no significant effect was observed for treatments with the amphipod. Microcrustaceans strongly increased the production of fine particulate organic matter, particularly in treatments with fungi alone (+637%). The leaf consumption rate by the amphipod significantly decreased ( 61%) at 13 days in the presence of microcrustaceans, likely due to predation on cladocerans. 5. Our study supports the potential role of microcrustaceans in the detrital food web of streams and rivers. Interestingly, microcrustaceans may interact with microbial and macroinvertebrate decomposers in either positive or negative ways. Therefore, microcrustaceans add complexity to detrital food webs by increasing vertical diversity and modulating biotic interactions with important consequences for carbon and energy transfers in stream ecosystems

    The role of the freshwater shrimp atyaephyra desmarestii in leaf litter breakdown in streams

    Get PDF
    This version does not correspond to the published one. To access the final version go to: http://www.springerlink.com/content/a31518u452m03286/In aquatic ecosystems, microorganisms and invertebrates provide critical links between plant detritus and higher trophic levels. Atyaephyra desmarestii is an omnivorous decapod that inhabits freshwaters and exhibits high tolerance to temperature oscillations and high ability to colonize new habitats. Although A. desmarestii is able to ingest a variety of foods, few studies have been conducted to elucidate the role of this freshwater shrimp on detritus breakdown in streams. In this study, A. desmarestii was allowed to feed on conditioned or unconditioned alder and eucalyptus leaves in microcosms with or without access to its fecal pellets. At the end of the experiment, total body length of the animals was measured, and the remaining leaves and fecal pellets were used for dry mass quantification and assessment of bacterial and fungal diversity by denaturing gradient gel electrophoresis (DGGE). Cluster analyses of DGGE fingerprints indicated that the major differences in microbial communities on leaves were between leaf types, while on fecal pellets were between conditioned and unconditioned leaves. However, the consumption rate by the shrimp did not differ between leaf types, and was significantly higher on leaves conditioned by microorganisms and in treatments without access to feces. In treatments without access to feces, the production of feces and fine particulate organic matter was also significantly higher for conditioned leaves. Overall, our results support the feeding plasticity of A. desmarestii and its potential role in plant litter breakdown in streams. This might have implications for maintaining stream ecosystem functioning, particularly if more vulnerable shredders decline.The Portuguese Foundation for the Science and Technology supported S. Duarte (SFRH/BPD/47574/2008

    Litter diversity, fungal decomposers and litter decomposition under simulated stream intermittency

    Get PDF
    1. The drying of stream channels resulting from flow interruption is expected to increase as a consequence of climate change. Implications for aquatic organisms and processes are profound. We assessed whether riparian diversity can partially buffer against consequences of drying on fungal decomposers and leaf litter decomposition, an important ecosystem process. 2. Our central hypothesis was that during dry periods recalcitrant leaf litter with high water- holding capacity would extend the window of opportunity for microbial activity in less recalci- trant litter when both litter types are mixed, and that this would lead to a positive litter diversity effect on decomposition. To test for such interactive effects, we conducted a diversity experiment in a Mediterranean stream, in which alder and oak litter, and a mixture of both, was subjected to various drying regimes differing in intensity and timing. 3. Drying regime affected both fungal decomposers and the decomposition rate of alder litter. Effects were observed both immediately and 3 weeks after stream flow resumed. Small differences in the timing of the dry period influenced both decomposition rate and measures of fungal performance (i.e. biomass and sporulation activity). Litter mixing, in contrast, had no effect on either decomposition or fungal decomposers, although mixing increased moisture retention in alder litter as required for the mechanism hypothesized to lead to a diversity effect. 4. Given the contrasting traits of the litter types used in the experiment, our results imply that riparian tree diversity is unlikely to buffer against increased frequencies of stream flow disruption expected in the face of climate change. It appears, however, that the precise timing of dry periods and high-flow events will strongly influence the extent to which stream food webs can exploit the resources supplied by riparian vegetation in the form of leaf litter
    • 

    corecore