47 research outputs found

    The Multiple Faces of MNT and Its Role as a MYC Modulator

    Get PDF
    MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor. Indeed, 10% of human tumors present deletions of one MNT allele. However, some reports show that MNT functions in cooperation with MYC by maintaining cell proliferation, promoting tumor cell survival, and supporting MYC-driven tumorigenesis in cellular and animal models. Although MAX was originally considered MNT?s obligate partner, our recent findings demonstrate that MNT also works independently. MNT forms homodimers and interacts with proteins both outside and inside of the proximal MYC network. These complexes are involved in a wide array of cellular processes, from transcriptional repression via SIN3 to the modulation of metabolism through MLX as well as immunity and apoptosis via REL. In this review, we discuss the present knowledge of MNT with a special focus on its interactome, which sheds light on the complex and essential role of MNT in cell biology.J.L.-P. was supported by a postdoctoral scholarship from the Radiumhemmet Research Funds, Stockholm. M.A.-H. was supported by grants from the Swedish Cancer Society, the Swedish Childhood Cancer Fund, the Swedish Research Council, Radiumhemmet Research Funds, and Karolinska Institutet, and J.L. was supported by grant SAF2017-88026-R from Agencia Estatal de Investigación, from the Spanish Government

    Fibroblasts in the Tumor Microenvironment : Shield or Spear?

    Get PDF
    Tumorigenesis is a complex process involving dynamic interactions between malignant cells and their surrounding stroma, including both the cellular and acellular components. Within the stroma, fibroblasts represent not only a predominant cell type, but also a major source of the acellular tissue microenvironment comprising the extracellular matrix (ECM) and soluble factors. Normal fibroblasts can exert diverse suppressive functions against cancer initiating and metastatic cells via direct cell-cell contact, paracrine signaling by soluble factors, and ECM integrity. The loss of such suppressive functions is an inherent step in tumor progression. A tumor cell-induced switch of normal fibroblasts into cancer-associated fibroblasts (CAFs), in turn, triggers a range of pro-tumorigenic signals accompanied by distraction of the normal tissue architecture, thus creating an optimal niche for cancer cells to grow extensively. To further support tumor progression and metastasis, CAFs secrete factors such as ECM remodeling enzymes that further modify the tumor microenvironment in combination with the altered adhesive forces and cell-cell interactions. These paradoxical tumor suppressive and promoting actions of fibroblasts are the focus of this review, highlighting the heterogenic molecular properties of both normal and cancer-associated fibroblasts, as well as their main mechanisms of action, including the emerging impact on immunomodulation and different therapy responses.Peer reviewe

    DHODH inhibition modulates glucose metabolism and circulating GDF15, and improves metabolic balance

    Get PDF
    Dihydroorotate dehydrogenase (DHODH) is essential for the de novo synthesis of pyrimidine ribonucleotides, and as such, its inhibitors have been long used to treat autoimmune diseases and are in clinical trials for cancer and viral infections. Interestingly, DHODH is located in the inner mitochondrial membrane and contributes to provide ubiquinol to the respiratory chain. Thus, DHODH provides the link between nucleotide metabolism and mitochondrial function. Here we show that pharmacological inhibition of DHODH reduces mitochondrial respiration, promotes glycolysis, and enhances GLUT4 translocation to the cytoplasmic membrane and that by activating tumor suppressor p53, increases the expression of GDF15, a cytokine that reduces appetite and prolongs lifespan. In addition, similar to the antidiabetic drug metformin, we observed that in db/db mice, DHODH inhibitors elevate levels of circulating GDF15 and reduce food intake. Further analysis using this model for obesity-induced diabetes revealed that DHODH inhibitors delay pancreatic β cell death and improve metabolic balance.publishedVersio

    Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma

    Get PDF
    Many metabolic pathways, including lipid metabolism, are rewired in tumors tosupport energy and biomass production and to allow adaptation to stressful en-vironments. Neuroblastoma is the second deadliest solid tumor in children. Ge-netic aberrations, as the amplification of theMYCN-oncogene, correlate stronglywith disease progression. Yet, there are only a few molecular targets successfullyexploited in the clinic. Here we show that inhibition of fatty acid synthesis led toincreased neural differentiation and reduced tumor burden in neuroblastomaxenograft experiments independently ofMYCN-status. This was accompaniedby reduced levels of the MYCN or c-MYC oncoproteins and activation of ERKsignaling. Importantly, the expression levels of genes involved inde novofattyacid synthesis showed prognostic value for neuroblastoma patients. Our findingsdemonstrate that inhibition ofde novofatty acid synthesis is a promising pharma-cological intervention strategy for the treatment of neuroblastoma indepen-dently ofMYCN-status

    Drug-resilient cancer cell phenotype is acquired via polyploidization associated with early stress response coupled to HIF-2α transcriptional regulation

    Get PDF
    Therapeutic resistance and recurrence remain core challenges in cancer therapy. How therapy resistance arises is currently not fully understood with tumors surviving via multiple alternative routes. Here, we demonstrate that a subset of cancer cells survives therapeutic stress by entering a transient state characterized by whole genome doubling. At the onset of the polyploidization program, we identified an upregulation of key transcriptional regulators, including the early stress-response protein AP-1 and normoxic stabilization of HIF-2α. We found altered chromatin accessibility, ablated expression of RB1, and enrichment of AP-1 motif accessibility. We demonstrate that AP-1 and HIF-2α regulate a therapy resilient and survivor phenotype in cancer cells. Consistent with this, genetic or pharmacologic targeting of AP-1 and HIF-2α reduced the number of surviving cells following chemotherapy treatment. The role of AP-1 and HIF-2α in stress-response by polyploidy suggest a novel avenue for tackling chemotherapy-induced resistance in cancer

    A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage

    Get PDF
    ML, CD, IvL, GP, TM, SD, MS, APF, CT, DL, MAH, KL and SL: project grants from the Swedish Research Council, the Swedish Cancer Society and the Swedish Childhood Cancer Foundation. MHi and JC: Cancer Research UK (C8/A6613). MC, EP and WE: Wellcome Trust (073915). MN and BV: projects MEYS-NPS-LO1413 and GACR P206/12/G151. EMC, MP, MMS, ZF and PG: Norwegian Cancer Society (182735, 732200) and Helse Vest (911884, 911789). RB and SC: NIH (R01 CA95684), the Leukemia and Lymphoma Society and the Waxman Foundation. NW, AH, Ad’H: Cancer Research UK (C21383/A6950) and Engineering and Physical Sciences Research Council Doctoral Training Program. JL and YZ: Cancer Research UK (C240/A15751). MH and BW: SARomics Biostructures ABUY, KF: DDDP SciLife, Sweden. LJ, MHa, RS and A-LG: CBCS, Sweden. VP: SciLife fellowship. AT: Breast Cancer Research Scotland.The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.Publisher PDFPeer reviewe

    Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling

    Get PDF
    Background: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. Results: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. Conclusion: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases

    Embryonal neural tumours and cell death

    Full text link
    corecore