4,042 research outputs found

    “Living on the edge” : the role of field margins for common vole (Microtus arvalis) populations in recently colonised Mediterranean farmland

    Get PDF
    Acknowledgments RRP was supported by a PhD-studentship from the University of Valladolid (co-funded by Banco Santander, RR 30/04/2014). Financial support was provided by ECOCYCLES (BIODIVERSA 2008, Era-net European project, EUI2008-03658 and NERC NE/G002045/1 to XL) and ECOVOLE projects (CGL2012-35348; Ministerio de Economía y Competitividad of Spain). The article also contributes to project ECOTULA (CGL2015-66962-C2-1-R). We held all the necessary licenses and permits for conducting this work (JJLL, FM and RRP held animal experimentation permits of level B for Spain, and a capture permit was provided by the Consejería de Fomento y Medio Ambiente, Junta de Castilla y León (Expte: EP/CYL/665/2014)). We thank two anonymous reviewers for providing and constructive comments to improve the manuscript.Peer reviewedPublisher PD

    Density-Dependent Prevalence of Francisella tularensis in Fluctuating Vole Populations, Northwestern Spain

    Get PDF
    Self Archiving; https://wwwnc.cdc.gov/eid/page/copyright-and-disclaimers J.J.L.L., F.M., and R.R.P. held official licenses for trapping wildlife in Spain. Capture permits were provided by the Dirección General del Medio Natural, Junta de Castilla y León. This study was supported by projects ECOVOLE (grant CGL2012-35348), ECOTULA (grant CGL2015-66962-C2-1-R), and RESERTULA (grant CLG2015-66962-C2-2-R), which were funded by the Ministerio de Economía y Competitividad MINECO/FEDER, Spain. R.R.P. was supported by a PhD studentship from the University of Valladolid (co-funded by Banco Santander).Peer reviewedPublisher PD

    Large N meson masses from a matrix model

    Get PDF
    We explain how to compute meson masses in the large NN limit using the twisted Eguchi-Kawai model. A very simple formula is derived, and we show how it leads in a fast and efficient way to results which are in fairly good agreement with other determinations. The method is easily extensible to reduced models with dynamical fermions based on the twisted reduction idea.Comment: latex 14 pages and 3 figure

    Above-ground biomass and productivity in a rain forest of eastern South America

    Get PDF
    Abstract: The dynamics of tropical forest woody plants was studied at the Nouragues Field Station, central French Guiana. Stem density, basal area, above-ground biomass and above-ground net primary productivity, including the contribution of litterfall, were estimated from two large permanent census plots of 12 and 10 ha, established on contrasting soil types, and censused twice, first in 1992¿1994, then again in 2000¿2002. Mean stem density was 512 stems ha¿1 and basal area, 30m2 ha¿1. Stem mortality rate ranged between 1.51% and 2.06% y¿1. In both plots, stem density decreased over the study period. Using a correlation between wood density and wood hardness directly measured by a Pilodyn wood tester,we found that the mean wood densitywas 0.63 g cm¿3, 12% smaller than the mean of wood density estimated from the literature values for the species occurring in our plot. Above-ground biomass ranged from 356 to 398Mgha¿1 (oven-dry mass), and it increased over the census period. Leaf biomass was 6.47Mg ha¿1. Our total estimate of aboveground net primary productivity was 8.81 MgC ha¿1 y¿1 (in carbon units), not accounting for loss to herbivory, branchfalls, or biogenic volatile organic compounds, whichmay altogether account for an additional 1MgC ha¿1 y¿1. Coarse wood productivity (stem growth plus recruitment) contributed to 4.16 MgC ha¿1 y¿1. Litterfall contributed to 4.65MgC ha¿1 y¿1 with 3.16 MgC ha¿1 y¿1 due to leaves, 1.10 MgC ha¿1 y¿1 to twigs, and 0.39MgC ha¿1 y¿1 to fruits and flowers. The increase in above-ground biomass for both trees and lianas is consistentwith the hypothesis of a shift in the functioning of Amazonian rain forests driven by environmental changes, although alternative hypotheses such as a recovery from past disturbances cannot be ruled out at our site, as suggested by the observed decrease in stem density. Key Words: above-ground biomass, carbon, French Guiana, net primary productivity, tropical fores

    A comparison of updating algorithms for large N reduced models

    Get PDF
    We investigate Monte Carlo updating algorithms for simulating SU(N)SU(N) Yang-Mills fields on a single-site lattice, such as for the Twisted Eguchi-Kawai model (TEK). We show that performing only over-relaxation (OR) updates of the gauge links is a valid simulation algorithm for the Fabricius and Haan formulation of this model, and that this decorrelates observables faster than using heat-bath updates. We consider two different methods of implementing the OR update: either updating the whole SU(N)SU(N) matrix at once, or iterating through SU(2)SU(2) subgroups of the SU(N)SU(N) matrix, we find the same critical exponent in both cases, and only a slight difference between the two.Comment: 21 pages, 4 figure

    Height-diameter allometry of tropical forest trees

    Get PDF
    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Can we set a global threshold age to define mature forests?

    Get PDF
    Globally, mature forests appear to be increasing in biomass density (BD). There is disagreement whether these increases are the result of increases in atmospheric CO2 concentrations or a legacy effect of previous land-use. Recently, it was suggested that a threshold of 450 years should be used to define mature forests and that many forests increasing in BD may be younger than this. However, the study making these suggestions failed to account for the interactions between forest age and climate. Here we revisit the issue to identify: (1) how climate and forest age control global forest BD and (2) whether we can set a threshold age for mature forests. Using data from previously published studies we modelled the impacts of forest age and climate on BD using linear mixed effects models. We examined the potential biases in the dataset by comparing how representative it was of global mature forests in terms of its distribution, the climate space it occupied, and the ages of the forests used. BD increased with forest age, mean annual temperature and annual precipitation. Importantly, the effect of forest age increased with increasing temperature, but the effect of precipitation decreased with increasing temperatures. The dataset was biased towards northern hemisphere forests in relatively dry, cold climates. The dataset was also clearly biased towards forests <250 years of age. Our analysis suggests that there is not a single threshold age for forest maturity. Since climate interacts with forest age to determine BD, a threshold age at which they reach equilibrium can only be determined locally. We caution against using BD as the only determinant of forest maturity since this ignores forest biodiversity and tree size structure which may take longer to recover. Future research should address the utility and cost-effectiveness of different methods for determining whether forests should be classified as mature
    corecore