64 research outputs found

    Prevalence of blood parasites in seabirds - a review

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>While blood parasites are common in many birds in the wild, some groups seem to be much less affected. Seabirds, in particular, have often been reported free from blood parasites, even in the presence of potential vectors.</p> <p>Results</p> <p>From a literature review of hemosporidian prevalence in seabirds, we collated a dataset of 60 species, in which at least 15 individuals had been examined. These data were included in phylogenetically controlled statistical analyses of hemosporidian prevalence in relation to ecological and life-history parameters. <it>Haemoproteus </it>parasites were common in frigatebirds and gulls, while <it>Hepatozoon </it>occurred in albatrosses and storm petrels, and <it>Plasmodium </it>mainly in penguins. The prevalence of <it>Haemoproteus </it>showed a geographical signal, being lower in species with distribution towards polar environments. Interspecific differences in <it>Plasmodium </it>prevalence were explained by variables that relate to the exposure to parasites, suggesting that prevalence is higher in burrow nesters with long fledgling periods. Measures of <it>Plasmodium</it>, but not <it>Haemoproteus </it>prevalences were influenced by the method, with PCR-based data resulting in higher prevalence estimates.</p> <p>Conclusions</p> <p>Our analyses suggest that, as in other avian taxa, phylogenetic, ecological and life-history parameters determine the prevalence of hemosporidian parasites in seabirds. We discuss how these relationships should be further explored in future studies.</p

    Flexibility of habitat use innovel environments:Insights from a translocation experiment with Lesser Black-backed Gulls

    Get PDF
    Being faced with unknown environments is a concomitant challenge of species' range expansions. Strategies to cope with this challenge include the adaptation to local conditions and a flexibility in resource exploitation. The gulls of the Larus argentatus-fuscus-cachinnans group form a system in which ecological flexibility might have enabled them to expand their range considerably, and to colonize urban environments. However, on a population level both flexibility and local adaptation lead to signatures of differential habitat use in different environments, and these processes are not easily distinguished. Using the lesser black-backed gull (Larus fuscus) as a system, we put both flexibility and local adaptation to a test. We compare habitat use between two spatially separated populations, and use a translocation experiment during which individuals were released into novel environment. The experiment revealed that on a population-level flexibility best explains the differences in habitat use between the two populations. We think that our results suggest that the range expansion and huge success of this species complex could be a result of its broad ecological niche and flexibility in the exploitation of resources. However, this also advises caution when using species distribution models to extrapolate habitat use across space

    Satellite tracking of red-listed nominate lesser black-backed gulls (Larus f. fuscus):habitat specialisation in foraging movements raises novel conservation needs

    Get PDF
    In contrast to many other gull species, nominate lesser black-backed gulls (Larus fuscus fuscus, nLBBG) have shown generally decreasing population trends throughout their breeding area in northern and eastern Fennoscandia over the past decades and are now red-listed. Interspecific competition, predation, increased disturbance, organochlorine poisoning and food shortages were suggested as main reasons for the overall decrease. Here we contribute to a better understanding of population declines by comparing foraging movements of satellite tracked adult gulls in three geographical areas of Finland (West, South, and East) that differ in their population trends. Our analysis examines potential differences and preferences in the feeding site behaviour of adult gulls. Our comparison of the three geographical areas showed that nLBBGs preferred feeding at fur farms in West Finland, waste dumps in South Finland, and lakes and fields in East Finland. We found individual gulls of this purportedly generalist species to be highly specialised in their foraging behaviour, particularly those that might be associated with their survival probabilities. We hypothesise that differences in foraging behaviour and food availability during the breeding season are partially responsible for differences in demographic trends between populations. Specifically, we identify potential local conservation problems such as shooting in birds visiting fur farms. Our data suggest that the effective conservation and management of endangered nLBBGs could be aided by simple actions in the breeding areas in addition to better protection throughout the annual movement cycle

    Satellite tracking of red-listed nominate lesser black-backed gulls (Larus f. fuscus): Habitat specialisation in foraging movements raises novel conservation needs

    Get PDF
    In contrast to many other gull species, nominate lesser black-backed gulls (Larus fuscus fuscus, nLBBG) have shown generally decreasing population trends throughout their breeding area in northern and eastern Fennoscandia over the past decades and are now red-listed. Interspecific competition, predation, increased disturbance, organochlorine poisoning and food shortages were suggested as main reasons for the overall decrease. Here we contribute to a better understanding of population declines by comparing foraging movements of satellite tracked adult gulls in three geographical areas of Finland (West, South, and East) that differ in their population trends. Our analysis examines potential differences and preferences in the feeding site behaviour of adult gulls. Our comparison of the three geographical areas showed that nLBBGs preferred feeding at fur farms in West Finland, waste dumps in South Finland, and lakes and fields in East Finland. We found individual gulls of this purportedly generalist species to be highly specialised in their foraging behaviour, particularly those that might be associated with their survival probabilities. We hypothesise that differences in foraging behaviour and food availability during the breeding season are partially responsible for differences in demographic trends between populations. Specifically, we identify potential local conservation problems such as shooting in birds visiting fur farms. Our data suggest that the effective conservation and management of endangered nLBBGs could be aided by simple actions in the breeding areas in addition to better protection throughout the annual movement cycle. (C) 2017 The Authors. Published by Elsevier B.V

    Living with chronic infection: Persistent immunomodulation during avirulent haemoparasitic infection in a wild rodent

    Get PDF
    Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune‐related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti‐inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost

    Living with chronic infection: persistent immunomodulation during avirulent haemoparasitic infection in a wild rodent

    Get PDF
    Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune‐related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti‐inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost

    Double gametocyte infections in apicomplexan parasites of birds and reptiles

    Get PDF
    The simultaneous occurrence of male and female gametocytes inside a single host blood cell has been suggested to enhance apicomplexan transmission [’’double gametocyte infection (DGI) hypothesis’’]. We did a bibliographic search and a direct screen of blood smears from wild birds and reptiles to answer, for the first time, how common are these infections in the wild. Taking these two approaches together, we report here cases of DGIs in Plasmodium, Haemoproteus, Leucocy- tozoon and Hepatozoon, and cases of male–female DGIs in Haemoproteus of birds and reptiles and in Leucocy- tozoon of birds. Thus, we suggest that DGIs and male–female DGIs are more widespread than previously thought, opening a new research avenue on apicom- plexan transmissionPeer reviewe

    From the animal house to the field : are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?

    Get PDF
    Inbred mouse strains, living in simple laboratory environments far removed from nature, have been shown to vary consistently in their immune response. However, wildlife populations are typically outbreeding and face a multiplicity of challenges, parasitological and otherwise. In this study we seek evidence of consistent difference in immunological profile amongst individuals in the wild. We apply a novel method in this context, using longitudinal (repeated capture) data from natural populations of field voles, Microtus agrestis, on a range of life history and infection metrics, and on gene expression levels. We focus on three immune genes, IFN-γ, Gata3, and IL-10, representing respectively the Th1, Th2 and regulatory elements of the immune response. Our results show that there was clear evidence of consistent differences between individuals in their typical level of expression of at least one immune gene, and at most all three immune genes, after other measured sources of variation had been taken into account. Furthermore, individuals that responded to changing circumstances by increasing expression levels of Gata3 had a correlated increase in expression levels of IFN-γ. Our work stresses the importance of acknowledging immunological variation amongst individuals in studies of parasitological and infectious disease risk in wildlife populations

    Diversity, Loss, and Gain of Malaria Parasites in a Globally Invasive Bird

    Get PDF
    Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus) infecting house sparrows (Passer domesticus). We sampled house sparrows (N = 1820) from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis
    corecore