33 research outputs found

    IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome

    Get PDF
    Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species

    Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA

    Get PDF
    The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl-CoA analog. The structures reveal an alpha/beta architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design.This work was supported by the European Commission Contract HEALTH-F3-2011-260872, the Spanish Ministry of Economy and Competitiveness Contract BIO2013-49022-C2-2-R, and the Basque Government (to M.E.G.); Slovak Research and Development Agency Contract No. DO7RP-0015-11 (to K.M.) and the NIH/NIAID grant AI064798 (to M.J.). D.A.-J. acknowledges the support from Fundacion Biofisica Bizkaia. We gratefully acknowledge Sonia Lopez-Fernandez (Unit of Biophysics, CSIC, UPV/EHU, Spain), Drs E. Ogando and T. Mercero (Scientific Computing Service UPV/EHU, Spain) for technical assistance. We thank the Swiss Light Source (SLS), and the Diamond Light Source (DLS) for granting access to synchrotron radiation facilities and their staff for the onsite assistance. We specially thank the BioStruct-X project to support access to structural biology facilities. We also acknowledge all members of the Structural Glycobiology Group (Spain) for valuable scientific discussions. The following reagent was obtained through BEI Resources, NIAID, NIH: Mycobacterium tuberculosis, Strain H37Rv, Purified Phosphatidylinositol Mannosides 1 and 2 (PIM1,2), NR-14846

    Protein aggregates in Huntington's disease

    Full text link
    Huntington’s disease (HD) is an incurable neurodegenerative disease characterized by abnormal motor movements, personality changes, and early death. HD is caused by a mutation in the IT-15 gene that expands abnormally the number of CAG nucleotide repeats. As a result, the translated protein huntingtin contains disease-causing expansions of glutamines (polyQ) that make it prone to misfold and aggregate. While the gene and mutations that cause HD are known, the mechanisms underlying HD pathogenesis are not. Here we will review the state of knowledge of HD, focusing especially on a hallmark pathological feature—intracellular aggregates of mutant Htt called inclusion bodies (IBs). We will describe the role of IBs in the disease. We speculate that IB formation could be just one component of a broader coping response triggered by misfolded Htt whose efficacy may depend on the extent to which it clears toxic forms of mutant Htt. We will describe how IB formation might be regulated and which factors could determine different coping responses in different subsets of neurons. A differential regulation of IB formation as a function of the cellular context could, eventually, explain part of the neuronal vulnerability observed in HD

    Protein aggregates in Huntington's disease.

    No full text

    La proteína tau: localización subcelular, interacción con nuevas proteínas y agregación patológica

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 04-12-200

    Protein aggregates in Huntington's disease.

    No full text
    Huntington's disease (HD) is an incurable neurodegenerative disease characterized by abnormal motor movements, personality changes, and early death. HD is caused by a mutation in the IT-15 gene that expands abnormally the number of CAG nucleotide repeats. As a result, the translated protein huntingtin contains disease-causing expansions of glutamines (polyQ) that make it prone to misfold and aggregate. While the gene and mutations that cause HD are known, the mechanisms underlying HD pathogenesis are not. Here we will review the state of knowledge of HD, focusing especially on a hallmark pathological feature-intracellular aggregates of mutant Htt called inclusion bodies (IBs). We will describe the role of IBs in the disease. We speculate that IB formation could be just one component of a broader coping response triggered by misfolded Htt whose efficacy may depend on the extent to which it clears toxic forms of mutant Htt. We will describe how IB formation might be regulated and which factors could determine different coping responses in different subsets of neurons. A differential regulation of IB formation as a function of the cellular context could, eventually, explain part of the neuronal vulnerability observed in HD

    Tau dephosphorylation at tau-1 site correlates with its association to cell membrane

    No full text
    It has been considered that tau protein is mainly a cytoplasmic protein since it is a microtubule associated protein. However, it has also been suggested that tau could be located in the cell nucleus and membrane. In our work, the cellular distribution of tau has been studied by immunofluorescence and western blot analysis, after subcellular fractionation in neuroblastoma cells and in tau-transfected non neural cells using, mainly, two types of tau antibodies; antibody 7.51 (that recognizes tau independent of its phosphorylation level); and antibody Tau-1 (that recognizes tau only in its dephosphorylated form). Also, tau was expressed in COS-1 cells to test for the features involved in the sorting of tau to different cell localizations. Our results show that tau associated to cell membrane has a lower phosphorylation level in its proline-rich region. Additionally, in differentiated neuroblastoma cells, tau phosphorylation, at that region, decreases and the amount of tau associated to cell membrane increases.This work was supported by the Spanish CICYT, Fundación La Caixa, Comunidad de Madrid, and Fundación Ferrer. Also, an institutional grant of Fundación Ramón Areces is acknowledged.Peer reviewe

    The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules

    No full text
    The recent finding that several point mutations in the gene encoding for the microtubule-binding protein tau correlate with neurological disorders has heightened interest in the mechanisms of destabilization of this protein. In this study the functional consequences of the tau mutation R406W on the interaction of the protein with microtubules have been analyzed. Mutated tau is less phosphorylated than its normal counterpart at serines 396 and 404. Furthermore, the phosphorylated mutant protein is unable to bind to microtubules, and, as a consequence, microtubules assembled after transient nocodazole treatment in the presence of this tau variant contain only unmodified tau and appear to form more and longer bundles than those assembled in the presence of wild-type tau. We propose that phosphorylated tau, unbound to microtubules, could accumulate in the cytoplasm.This work was supported by grants from CICYT (Spain), Fundación La Caixa, and Comunidad Autónoma de Madrid and by an institutional grant from Fundación Ramón Areces.Peer reviewe
    corecore