56 research outputs found

    Trajectories Of Zooplankton Recovery In The Little Rock Lake Whole‐Lake Acidification Experiment

    Get PDF
    Understanding the factors that affect biological recovery from environmental stressors such as acidification is an important challenge in ecology. Here we report on zooplankton community recovery following the experimental acidification of Little Rock Lake, Wisconsin, USA. One decade following cessation of acid additions to the northern basin of Little Rock Lake (LRL), recovery of the zooplankton community was complete. Approximately 40% of zooplankton species in the lake exhibited a recovery lag in which biological recovery to reference basin levels was delayed by 1–6 yr after pH recovered to the level at which the species originally responded. Delays in recovery such as those we observed in LRL may be attributable to “biological resistance” wherein establishment of viable populations of key acid-sensitive species following water quality improvements is prevented by other components of the community that thrived during acidification. Indeed, we observed that the recovery of species that thrived during acidification tended to precede recovery of species that declined during acidification. In addition, correspondence analysis indicated that the zooplankton community followed different pathways during acidification and recovery, suggesting that there is substantial hysteresis in zooplankton recovery from acidification. By providing an example of a relatively rapid recovery from short-term acidification, zooplankton community recovery from experimental acidification in LRL generally reinforces the positive outlook for recovery reported for other acidified lakes

    Variation in calanoid copepod resting egg abundance among lakes with different acidification histories

    Get PDF
    Abstract The maintenance of species and genetic diversity within zooplankton egg banks may be crucial to the re-establishment of zooplankton communities following historical disturbance, such as anthropogenic acidification which globally caused widespread damage to ecological communities. Despite this, no other study has described basic characteristics of zooplankton egg banks among lakes with different acidification histories, such as variation in resting egg concentration. Theoretically, habitats with frequent periods of harsh environmental conditions are expected to select for resting egg production or prolonged dormancy in zooplankton, which would increase the size of the resting egg bank in lake sediments. In this study, we compared abundances of viable and inviable calanoid copepod resting eggs among three freshwater lakes with different acidification histories. While Swan Lake underwent major chemical and biological changes from acid and metal deposition, Teardrop and Bat lakes were relatively unaffected by historical acidification and had comparatively constant, but different pH over time. We also tested the effect of age on the viability of resting eggs. As predicted, higher numbers of viable resting eggs were found in recent sediments from acid-recovering Swan Lake compared to study lakes with relatively temporally constant environments (Teardrop and Bat lakes) when the total number of eggs was held as a covariate. We detected this result in spite of similar pelagic abundances of Leptodiaptomus minutus, the dominant species in zooplankton communities of these lakes. This pattern did not necessarily hold for inviable egg concentrations since these eggs were more abundant in both Swan and Bat lakes compared to Teardrop Lake in older sediments (1939-1951, 1800s). Within study lakes, the abundance of viable resting eggs declined with increased egg age. Further study is required to test mechanisms underlying these patterns

    Hemimysis anomala in Lake Ontario food webs: stable isotope analysis of nearshore communities

    Get PDF
    a b s t r a c t a r t i c l e i n f o Hemimysis anomala, a littoral freshwater mysid native to the Ponto-Caspian region, is the newest invader to the Laurentian Great Lakes basin. Discovered in 2006, they have since been found in all of the Great Lakes (except Lake Superior) and have the potential to offset the dietary energy sink caused by invasive dreissenid mussels (Dreissena bugensis and D. polymorpha) in the littoral zone. We evaluated nearshore food web structure at four sites along Lake Ontario's north shore spanning a gradient of Hemimysis density to determine: 1) if dominant nearshore food web pathways change seasonally, and 2) whether fish are exhibiting a dietary shift towards consumption of Hemimysis. No Hemimysis were found in any of the 431 fish (alewife Alosa pseudoharengus, round goby Neogobius melanostomus, and yellow perch Perca flavescens) stomachs analysed. We used stable isotopes of carbon ( C of Hemimysis. Our results suggest that Hemimysis are being incorporated into diets of round gobies, alewife and small yellow perch and their reliance on Hemimysis as a dietary component increases with Hemimysis density. As Hemimysis populations continue to establish and stabilize, fish may incorporate this species into their diets at a higher rate

    Towards a New Paradigm for Intuitive Theatrical Lighting Control

    Get PDF
    A simplified model of a lighting process applied in theatrical productions is one that involves two key players. The first is that of the lighting designer, to produce a set of intentions and plans for the scenes that define the show. The second, the lighting technician, has the job of translating these designs into practice using control equipment, luminaires, and other technical instruments. The lighting design often becomes a ‘working document’ subject to change and adaptation as the physical reality of the design becomes apparent, and the input of other stakeholders is considered. This process can be a valuable creative tool, and also a difficult technical hurdle to overcome, depending on a varied number of factors. A common frustration with this process is that either the complexity of the task, or difficulty in communication can make it difficult for the final creative vision to be effectively realised. Strains may also arise in the case of small, often touring, theatre companies where the lighting designer and technician may be the same person, and frequently one of the performers as well. Considering the design aspect, there can be challenges in ensuring efficacy of lighting plans between venues in touring productions, with 2D lighting sketches or even 3D computer simulations confined to the paper or screen. From a technical perspective, the role of the lighting technician in theatres and performance situations has included the operation of lighting control equipment during shows. The equipment has evolved over time but has, until recently, been grounded upon the basis of faders and the mixing desk. It is argued that this paradigm has failed to keep pace with the change in other interactive technologies. The on-going research described in this paper explores existing and upcoming technologies in the field, whilst also seeking to understand the roles and communication workflows of those involved in theatrical lighting to find the best areas to seek improvement, adopting principles of user-centred design. The intention of this research is to develop a new paradigm, and manifestation of it, using a control method for lighting or projection that allows a more intuitive form of operation in theatre productions, which will be scalable and flexible

    Current water quality guidelines across North America and Europe do not protect lakes from salinization

    Get PDF
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.Peer reviewe

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    Get PDF
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.Peer reviewe

    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance

    Get PDF
    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe

    Complex Interactions Between Regional Dispersal of Native Taxa and an Invasive Species

    Get PDF
    In the event of an environmental disturbance, dispersal of native taxa may provide species and genetic diversity to ecosystems, increasing the likelihood that there will be species and genotypes present that are less vulnerable to the disturbance. This may allow communities to maintain functioning during a disturbance and may be particularly important when the perturbation is novel to the system, such as the establishment of an invasive species. We examined how dispersal of native species may influence crustacean zooplankton communities in freshwater lakes invaded by the invertebrate predator, Bythotrephes longimanus. Using large enclosures, we experimentally tested the effect of dispersal on zooplankton community abundance, richness, and composition in (1) a community invaded by Bythotrephes, (2) the same community with the invader removed, and (3) a community that was never invaded. Dispersal increased zooplankton community abundance and richness; however, these effects were usually only significant in the invader-removed treatment. Dispersal tended to make the invader-removed communities more similar to never-invaded communities in abundance, richness, and composition. Dispersal had little effect on zooplankton abundance in the invaded community; however, richness significantly increased, and the community composition changed to resemble a never-invaded community by the end of the experiment. Our results have implications for understanding the role of dispersal during transitory states in communities. Dispersal of native taxa may be particularly important during the period between the arrival and broad-scale establishment of Bythotrephes, as dispersal through space or time (i.e., from resting eggs) may rapidly increase zooplankton abundance when the invader is absent or in low abundances. Overall, our results suggest that communities with strong local predatory and competitive interactions may be closed to immigration from colonists, but that invasive species may alter the conditions under which species can establish. These results have implications for the interaction of native and invasive species across broad spatial scales, as regional dispersal of native taxa may forestall the local extirpation of native species. In particular, transient phases that result from variable persistence of invaders within habitats or across a region may permit native colonists to successfully establish, and thus increase local and regional resistance to future disturbance

    2011a) The interplay between environmental conditions and Allee effects during the recovery of stressed zooplankton communities

    No full text
    Abstract. Many important ecological phenomena depend on the success or failure of small introduced populations. Several factors are thought to influence the fate of small populations, including resource and habitat availability, dispersal levels, interspecific interactions, mate limitation, and demographic stochasticity. Recent field studies suggest that Allee effects resulting from mate limitation can prevent the reestablishment of sexual zooplankton species following a disturbance. In this study, we explore the interplay between Allee effects and local environmental conditions in determining the population growth and establishment of two acid-sensitive zooplankton species that have been impacted by regional anthropogenic acidification. We conducted a factorial design field experiment to test the impact of pH and initial organism densities on the per capita population growth (r) of the sexual copepod Epischura lacustris and the seasonally parthenogenetic cladoceran Daphnia mendotae. In addition, we conducted computer simulations using r values obtained from our experiments to determine the probability of extinction for small populations of acid-sensitive colonists that are in the process of colonizing recovering lakes. The results of our field experiment demonstrated that local environmental conditions can moderate the impacts of Allee effects for E. lacustris: Populations introduced at low densities had a significantly lower r at pH 6 than at pH 7. In contrast, r did not differ between pH 6 and 7 environments when E. lacustris populations were introduced at high densities. D. mendotae was affected by pH levels, but not by initial organism densities. Results from our population growth simulations indicated that E. lacustris populations introduced at low densities to pH 6 conditions had a higher probability of extinction than those introduced at low densities to a pH 7 environment. Our study indicates that environmental conditions and mate limitation can interact to determine the fate of small populations of sexually reproducing zooplankton species. If a more rapid recovery of acid-damaged zooplankton communities is desired, augmentation of dispersal levels may be needed during the early phases of pH recovery in order to increase the probability of establishment for mate-limited zooplankton species

    Invasive Predator, Bythotrephes, has Varied Effects on Ecosystem Function in Freshwater Lakes

    Get PDF
    Bythotrephes longimanus is an invertebrate predator that has invaded the North American Great Lakes and a number of inland lakes, where it preys on crustacean zooplankton. We examined the effect of Bythotrephes on two measures of ecosystem function during a four month observational study of freshwater lakes on the boreal shield. Bythotrephes-invaded lakes had significantly lower epilimnetic zooplankton abundance and production compared to reference lakes. On average, Bythotrephes consumed 34% ofzooplankton production when it was present in lakes. There was some evidence of changes in the timing of zooplankton production, as well as shifts to cooler, less productive habitats, which may lessen the overall effect of the invader on the transfer of energy to higher trophic levels. We experimentally demonstrated a weak trophic cascade where invader predation reduced zooplankton biomass, and subsequently increased phytoplankton growth. However, the response was small in magnitude and not biologically relevant at the whole lake- scale. The most conspicuous effect of Bythotrephes that we measured was a diversion of energy away from native predators at higher trophic levels
    • 

    corecore