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ABSTRACT

Bythotrephes longimanus is an invertebrate predator that has invaded the North American Great
Lakes and a number of inland lakes, where it preys on crustacean zooplankton. We examined the
effect of Bythotrephes on two measures of ecosystem function during a four month observational
study of freshwater lakes on the boreal shield. Bythotrephes-invaded lakes had significantly lower
epilimnetic zooplankton abundance and production compared to reference lakes. On average,
Bythotrephes consumed 34% of zooplankton production when it was present in lakes. There was
some evidence of changes in the timing of zooplankton production, as well as shifts to cooler, less
productive habitats, which may lessen the overall effect of the invader on the transfer of energy to
higher trophic levels. We experimentally demonstrated a weak trophic cascade where invader
predation reduced zooplankton biomass, and subsequently increased phytoplankton growth.
However, the response was small in magnitude and not biologically relevant at the whole lake-
scale. The most conspicuous effect of Bythotrephes that we measured was a diversion of energy

away from native predators at higher trophic levels.

Keywords: invasive species, ecosystem function, crustacean zooplankton, Bythotrephes,

freshwater lakes, secondary production, zooplankton grazing
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INTRODUCTION

The introduction of non-indigenous species is expected to be one of the greatest threats to
species across all ecosystems (Wilcove and others 1998; Sala and others 2000) and the single most
important driver of biodiversity loss in freshwater lakes (Sala and others 2000). Although there is
evidence that invasive species can alter ecosystem function (Brooks and others 2004; Zhu and
others 2006), we currently lack understanding of how newly-introduced species may affect
ecosystem processes (Millenium Ecosystem Assessment 2005). Thus, the invasion of a non-
native species presents a unique opportunity to understand how complex ecosystems operate.

Bythotrephes longimanus (Crustacea, Branchiopoda, Onychopoda) is a parthenogenetic
invertebrate predator that has invaded all of the North American Great Lakes (Jin and Sprules
1990), and > 100 inland lakes in North America, including waterbodies in Ontario (N. Yan,
unpublished data), Minnesota (Branstrator and others 2006), and Michigan (Jarnagin and others
2000). Although studies have indicated that Bythotrephes prefers large, deep, low productivity
lakes in both its native Eurasia and in invaded regions (Maclsaac and others 2000), it has been
found in smaller shallow waterbodies and higher productivity lakes as well (Jarnagin and others
2000). Bythotrephes has the potential to invade many boreal shield and northern temperate lakes,
especially those visited by human vectors.

Bythotrephes can have substantial effects on the community structure of its primary prey,
crustacean zooplankton, and although there is some degree of among-lake variability in the
response to invasion, the general trend has been reductions in species richness (Yan and others
2002; Strecker and others 2006), total community biomass (Boudreau and Yan 2003; Strecker and
Arnott 2005), and total community abundance of zooplankton (Yan and others 2001; Strecker and

Arnott 2005; Strecker and others 2006). These trends follow from dramatic declines in cladoceran
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zooplankton richness and abundance (Yan and others 2001; Boudreau and Yan 2003; Strecker and
others 2006).

Zooplankton are a central component in freshwater food webs, transferring energy to
young-of-year (YOY) and planktivorous fish via production of biomass, grazing on phytoplankton
biomass, and recycling dissolved nutrients to phytoplankton. Foraging success of juvenile fish can
be greatly influenced by variability in zooplankton populations in freshwater ecosystems (Chick
and van den Avyle 1999; Beauchamp and others 2004). In one study, it was observed that
Bythotrephes consumed large portions of zooplankton production in Harp Lake, Ontario during
summer (Dumitru and others 2001), potentially decreasing the amount of production available to
other components of the aquatic food web. Additionally, when Bythotrephes was present, total
consumption of the invertebrate predator guild increased by >300% (S. Foster, pers. comm.),
potentially reducing the efficiency of energy transfer to higher trophic levels (Sprules 1980).

The impact of zooplankton on phytoplankton is influenced by zooplankton biomass and
community composition — and is therefore potentially affected by Bythotrephes predation.
Zooplankton grazing and nutrient recycling can have a greater effect on phytoplankton biomass in
lakes than nutrient recycling of fish (Sarnelle and Knapp 2005), and grazing by large cladoceran
zooplankton can exert strong top-down control on phytoplankton (Elser and Goldman 1991).
Thus, zooplankton community structure in lakes can be a primary determinant of the flow of
energy and nutrients to all trophic levels; however, few studies have examined the effects of
invaders on nutrient and energy flow at multiple levels of organization in freshwater systems
(Simon and Townsend 2003).

The overall purpose of this study was to determine the effects of the invasive predator,
Bythotrephes, on ecosystem function in boreal lakes. Ecosystem function is commonly measured

as changes in rates of productivity, decomposition, nutrient cycling, and resistance and resilience
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to perturbations (Loreau and others 2001). In our study we measured ecosystem function as
changes in rates of secondary productivity and the combined effects of zooplankton grazing and
nutrient cycling on phytoplankton. The two main objectives of our study were to examine: (1) the
effect of Bythotrephes on crustacean zooplankton production within each lake stratum and
throughout the ice-free season; and (2) if zooplankton impact on phytoplankton is influenced by
Bythotrephes-induced changes in community composition and biomass.

Based on reductions in zooplankton abundance observed in previous studies (Yan and
others 2001; Strecker and others 2006), we hypothesized that Bythotrephes would negatively
affect zooplankton production. Bythotrephes tends to be absent in lakes until middle-to-late June
(Yan and others 2001), creating a window of opportunity before this time period for zooplankton
to increase their reproduction. Therefore, we expect to see a less pronounced effect of
Bythotrephes on coarse measures of overall seasonal and whole water column production, but
differences in fine-scale temporal (biweekly) and spatial (variation between strata) patterns of
zooplankton production. Secondly, the effects of zooplankton grazing and nutrient recycling on
phytoplankton are significantly influenced by both community biomass and composition (Elser
and Goldman 1991; Cyr 1998; Elser and others 2000), thus, we would expect zooplankton
communities in invaded lakes to have a lessened impact on phytoplankton as a result of
Bythotrephes-induced reductions in total zooplankton biomass and selective predation on

cladocerans.

MATERIALS AND METHODS

Study Site and Sampling
Eight lakes in the Parry Sound and Muskoka districts of south-central Ontario were chosen

for our study (Table 1). The study lakes are located in mixed-forest catchments, have low
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productivity (oligo-mesotrophic), and are circumneutral. Lakes are relatively deep, ranging from
23 — 59 m, and have surface areas ranging from 72 — 2058 ha (Table 1). Lakes were chosen based
on prior knowledge of the invasion of Bythotrephes (invaded lakes had Bythotrephes for at least 5
years), proximity, and similarity of chemical, physical, and morphometric characteristics. As well,
all of the lakes contained the glacial relict Mysis relicta, which is indicative of a similar post-
glacial history, and planktivorous fish communities, including yellow perch (Perca flavescens) and
a combination of cisco (Coregonus artedi), rainbow smelt (Osmerus mordax), and lake whitefish
(Coregonus clupeaformis) (Appendix 1).

Lakes were visited every two weeks from May to September 2003 (n =9), and samples
were generally taken within a five-day time period. At a deep station in the lake, temperature,
dissolved oxygen, and Secchi depth were measured, and samples were taken for zooplankton,
Bythotrephes, and chlorophyll a (chl @). Four additional sample stations for Bythotrephes
collection were chosen along a transect, starting at the deep station and moving toward shore,
marking each station with a GPS to locate it on the next sampling date (see Strecker and others
2006 for sampling details). Logistical constraints prevented sampling at night so all samples were
taken during the day. Chl a samples were taken from the epilimnion using a 2.5-cm diameter
integrated tube sampler. The integrated tube sampler was also used to collect water from the
epilimnion on the week of 14 July 2003 for analysis of water chemistry variables.

Zooplankton were sampled with a 110-um mesh conical closing net that was 0.5 m in
diameter. Samples were taken in the epilimnion, metalimnion, and hypolimnion (from 5 m off the
lake bottom to the top of the hypolimnion) after thermal strata were determined from a
temperature profile taken at 1-m intervals. The top of the metalimnion was defined as a change of
> 1°C per meter, and the top of the hypolimnion by a change of < 0.2°C per meter. On the first

sampling date, stratification had not yet been achieved in Bernard Lake, so the depth of the entire
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water column was roughly divided in 3 and samples were taken from those depths. Average
temperatures from each strata in Bernard Lake on the first date were consistent with other lakes,
thus, we do not believe that this method affected our results. The hypolimnion of Doe Lake could
not be sampled on seven dates because it was too shallow; therefore, this lake was excluded from
hypolimnetic abundance and production estimations. Samples for Bythotrephes were taken over
the entire water column, starting from 5 m off the lake bottom, using a 400-um mesh conical net
that was 0.5 m in diameter. Bythotrephes and zooplankton samples were anesthetized and
preserved in 5.5% sugared and buffered formalin.

Zooplankton samples were enumerated and measured on a Leica MZ12.5 dissecting
microscope using the semi-automated counting system ZEBRA?2 (Allen and others 1994).
Subsamples of a known volume were taken and a minimum of 350 individuals were identified to
genus, with the exception of Daphnia mendotae, Eubosmina (Neobosmina) tubicen, Eubosmina
(Eubosmina) coregoni, Eubosmina (Eubosmina) longispina, and other species which are the only
representative of their genus in the area. Diaptomid calanoid copepods belonging to the genera
Leptodiaptomus and Skistodiaptomus were grouped simply as Diaptomus spp. To obtain a
representative enumeration of all zooplankton genera present, only 40-50 individuals of the
dominant taxa, 40-50 copepodids per order, and 20-30 nauplii per order were counted. Both loose
and attached eggs were counted in the subsamples, stopping either when the minimum number of
individuals was reached or > 700 loose eggs were counted. Loose eggs were designated as
cladoceran or copepod and apportioned to the number of adults present. Bythotrephes samples
containing < 32 individuals were counted in their entirety, while samples with greater numbers
were split with a Folsom plankton splitter and mixed to ensure that clumping did not occur. All

instars were enumerated and abundances were averaged across the five sampling stations.
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Zooplankton Production

Although Bythotrephes (Pangle and Peacor 2006) and other visual predators (Lampert
1989) can induce diel vertical migration of zooplankton, we chose to sample during the day to
specifically examine the vertical distribution of productivity available to visually foraging
predators, such as cisco, which are daytime feeders (Milne and others 2005). Comparisons of day
and night vertically-stratified samples of zooplankton taken in 2007 in most of our study lakes
suggest that some zooplankton migrated downwards in invaded lakes during the day, while diel
migrations in non-invaded lakes tended to be small in magnitude (S. Arnott, unpublished data).
There was variability in the extent of migration in invaded lakes: on average 15% of total
zooplankton (range: -13 — 31%; negative value represents migration in the opposite direction)
moved from the metalimnion to the epilimnion at night, but migration of zooplankton away from
the hypolimnion to warmer temperatures at night was small (mean: 9%, range: -9 — 28%). We
acknowledge that as a result of these migrations, our calculations may underestimate metalimnetic
production in invaded lakes by including organisms that have spent nights at warmer temperatures.

Biweekly zooplankton production was calculated using two methods. For the calanoid
copepod species which do not carry their eggs in an egg sac (e.g., Senecella calanoides), the
cohort method was used (Downing 1984). For all other zooplankton, the egg-ratio method was
used (Borgmann and others 1984), following Paloheimo (1974). Temperature and species-specific
values for egg development time were determined from the literature (see Kuns and Sprules 2000),
and the mean temperature of each stratum was used. Mean dry weights for zooplankton were
calculated using length-weight regressions (McCauley 1984; Culver and others 1985; Yan and
Mackie 1987; Yan and Pawson 1997; W.G. Sprules, unpublished data). Areal biweekly
production was calculated by multiplying volumetric production by the depth of the stratum. All

of our production estimates were calculated at the genus level and then summed across all taxa to
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obtain total crustacean zooplankton production. Bythotrephes production was calculated
separately from the crustacean zooplankton community, as we wanted to examine the effects of
Bythotrephes as a predator on zooplankton productivity, exclusive of its contribution to total
zooplankton productivity (for comparison, Bythotrephes production is displayed in Fig. 1).
Biweekly Bythotrephes consumption (mg m™ fortnight™') was estimated by dividing Bythotrephes
biweekly production (mg m™ fortnight™'; calculated by the egg-ratio method from whole water
column samples) by growth efficiency, which was estimated at 27% for a population of mixed
instars (Dumitru and others 2001). Consumption by Bythotrephes was contrasted with
zooplankton production from the epilimnion and metalimnion, as a concurrent study in a subset of
the lakes in our study suggests that this is where the invader is generally found (Young and Yan

2008).

Impact of Zooplankton on Phytoplankton

To assess the effects of Bythotrephes on trophic interactions between zooplankton and
phytoplankton, an in situ experiment was conducted three times in a subset of the study lakes: two
invaded and three reference lakes. Using a technique modified from Elser and Goldman (1991),
Cyr (1998), and Sommer and others (2001), we measured zooplankton impact on the
phytoplankton community, including direct grazing effects, but also indirect effects, such as
nutrient recycling, as no nutrients were added to the carboys. Four translucent 20-L carboys were
deployed for 72 hr in each lake, once during June, July, and August, approximately four weeks
apart. Water was taken from the region of the lake at which the carboys were incubated (~50%
light penetration), thus minimizing between-lake differences in light exposure. Water was filtered
through 80-pum mesh to remove zooplankton and added to each carboy. Zooplankton were added

to each of the carboys at several densities (0, 1, 2, and 3% ambient) by taking discrete hauls with a
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closing net through each of the strata (epi-, meta-, and hypolimnion), thus compensating for any
diel vertical migration that may have been occurring, but also likely overestimating grazing due to
the presence of hypolimnetic taxa that would not be feeding in the epilimnion during the day. The
carboys were then sealed, weighted, and incubated for 72 hr. All predaceous macroinvertebrates,
e.g., Bythotrephes, were excluded from the carboys. By removing Bythotrephes from the carboys,
we are thus explicitly testing how zooplankton communities shaped by invasion will influence
algal community biomass in short term experiments in invaded and reference lakes. Although
initial differences in the composition of phytoplankton communities could influence zooplankton
grazing, the invaded and reference lakes in this study have similar proportions of edible
phytoplankton cells (B. Beisner, unpublished data), suggesting that conditions were relatively
comparable in invaded and reference lakes. Chl a samples from each carboy were taken at the
beginning and end of the experiment, concentrating water samples onto 1.2-um glass fiber filters,
and measured using fluorometry. Following Cyr (1998), the realized algal growth rate per day for
the carboys that contain zooplankton (7) were calculated from

(1) r=In(C;/Cyp) /T

where Cyand C; are chl a concentrations (ug L) at the beginning and end of the experiment, and
T is the length of time the experiment ran (days). Zooplankton impact was calculated as the slope
(b) of the equation

2) r=>b(ZB) +a

where ZB is the zooplankton biomass at 0, 1, 2 or 3x ambient biomass and a is the growth rate in
the absence of zooplankton. Zooplankton biomass was determined from the average of the two
survey sampling dates that surrounded the experiment. The coefficients of the equation were
estimated by linear regression. Percent change in algae (per day) was calculated as (- (1 - eb) X

100). Although this experiment and others upon which it was modeled (Elser and Goldman 1991;

10
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Cyr 1998) are brief, our experiment was designed to provide insight into possible trophic
interactions that may result from changes in lake food webs and should be looked upon as a
simplified test of the interaction between zooplankton and phytoplankton without confounding

factors from higher trophic levels.

Statistical Analyses

One-way ANOV As were used to examine differences in physical, chemical, and
morphological characteristics of study lakes. Repeated measures ANOVAs were used to test if
there were differences between invaded and reference lakes for chl a, secondary production,
zooplankton abundance, and egg ratio (eggs individual ). Because of non-normality and
heteroscedasticity in some of the above measures, all values were log (x+1)-transformed. The
Huynh-Feldt adjusted p-value was used in situations where the assumption of sphericity was not
met for repeated measures analyses. Although we would expect to observe seasonal changes in
zooplankton communities, independent of invasion status, it was not our intention to describe
these changes, therefore, we will not discuss time effect results unless there is an interaction with
invasion. A two-factor ANOVA was used to test for differences in zooplankton grazing impact
over all three experimental time periods in invaded and reference lakes, with time as a block

factor. Statistical analyses were performed using Statistica 6.0 (StatSoft 2001).

RESULTS

Zooplankton Production
Reference and invaded lakes were similar in surface area, maximum depth, and primary

productivity (chl a and total phosphorus) (Table 1), as well as thermal structure (epilimnetic
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temperature: F; 6= 0.01, p = 0.98). There was also no significant difference in concentrations of
calcium and dissolved organic carbon, pH, and conductivity between lake categories (Table 1).

Zooplankton production was significantly lower in the epilimnion of Bythotrephes-invaded
lakes throughout the summer, declining on average by > 6000 mg m™ season™, or about 67% (Fig.
2, Table 2). There was no difference in metalimnetic or hypolimnetic production between invaded
and reference lakes (Fig. 2, Table 2), although the hypolimnions of two of the four invaded lakes,
Bernard and Harp, were 18x and 13x more productive than the average hypolimnetic productivity
of reference lakes (Fig. 1). When all of the strata were combined, there was no statistical
difference in whole-water column zooplankton production between invaded and reference lakes
(Fig. 1, 2, Table 2).

In the epilimnion, production of calanoid copepods, cyclopoid copepods, and small
cladocerans was significantly reduced in Bythotrephes-invaded lakes (Fig. 3, Table 3).
Epilimnetic production by large cladocerans tended to be reduced in Bythotrephes-invaded lakes,
though not significantly. There was a significant Time x Invasion interaction for small
cladocerans, where production in invaded lakes was high early in the season, but declined
precipitously from an average of 442 mg m™ fortnight' in May and early June to <2 mg m™
fortnight over the remainder of the sampling dates (Fig. 3, Table 3). In the metalimnion,
production by cyclopoids, calanoids, and small cladocerans was similar in reference and invaded
lakes, while large cladoceran production was 90% lower in invaded lakes compared to reference
lakes, averaging 13 mg m™ fortnight™ over the season (Fig. 3, Table 3). In the hypolimnion,
cyclopoid copepods had higher production in invaded lakes early in the season, followed by a
decrease beginning in mid-June, and calanoid copepod production was significantly greater in
invaded lakes (Fig. 3, Table 3). There was no difference in large and small cladoceran

hypolimnetic production between lake groups (Fig. 3, Table 3).

12
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The abundance of crustacean zooplankton in the epilimnion was significantly affected in
invaded lakes, with declines of > 33 000 individuals m™, on average (Fig. 4, Table 2). There was
also a significant Time X Invasion interaction, such that abundances were similar in invaded and
reference lakes in May and early June, but showed significant declines in the invaded lakes after
this time. There was no difference between invaded and reference lake zooplankton abundance in
the metalimnion, hypolimnion, and when all strata are combined, nor were there any interactions
between invasion status and time (Fig. 4, Table 2).

Bythotrephes-invaded lakes had a marginally significant increase in numbers of eggs
produced per individual zooplankter in the hypolimnion, which was most noticeable early in the
summer (Fig. 5, Table 2). This peak was likely driven by extremely high egg production by
hypolimnetic cyclopoid copepods, who produced on average > 9000 eggs m™ (A. Strecker,
unpublished data), far greater numbers than other zooplankton of a similar size, and had greater
numbers of eggs per individual in invaded lakes compared to reference lakes (Fig. 5, Table 4).
When all strata were combined, there was a marginally significant increase in eggs produced per
individual zooplankter in invaded lakes compared to reference lakes on the first sampling date
(F16=3.82, p=0.10). This early season peak in number of eggs per individual in invaded lakes
came mostly from small cladoceran and cyclopoid functional groups (Fig. 5). There was no
significant effect of invasion on total or functional group eggs per individual in the epilimnion,
metalimnion, or when all strata were combined, nor were there any significant Time x Invasion
interactions (Fig. 5, Table 2).

Bythotrephes consumed substantial portions of the total seasonal zooplankton production
in three of the four invaded lakes (Fig. 6), on average consuming > 1000 mg m™ season™ or about
17% of secondary production from the middle of May to the middle of September. However,

Bythotrephes did not tend to appear until mid-June in our samples, thus zooplankton production
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consumed after Bythotrephes starts reproducing is, on average, about 34% (Fig. 6). Bythotrephes
consumed > 100% of zooplankton production on two sampling dates in Bernard Lake and Harp
Lake, but its consumption never exceeded zooplankton production in Peninsula and Vernon lakes.
In general, Bythotrephes production was low, only comprising < 6% of total zooplankton

production, on average (Fig. 1).

Impact of Zooplankton on Phytoplankton

In each grazing experiment, algae decreased in reference lakes and increased in invaded
lakes (Fig. 7a). There was a significant effect of invasion on zooplankton impact on the algal
community (invasion: £ g=23.13, p <0.01, time: F, 3= 0.85, p = 0.46), such that % change in
algae increased in the invaded lakes. However, this increase is likely not biologically meaningful
in the long term, as changes in chl « in the experimental carboys were typically <1 pug L.
Indeed, there was no significant difference in epilimnetic chl @ concentrations between lakes with
and without Bythotrephes throughout the entire season in the entire subset of lakes sampled (Fig.

7b, Table 1).

DISCUSSION

We found that the invasive invertebrate predator, Bythotrephes, altered some measures of
ecosystem function in freshwater lakes, such as epilimnetic secondary production, but that other
measures were generally unchanged. There was some evidence for seasonal shifts in the
production of different functional groups and individual egg production in invaded lakes in May
and early June, but this was not great enough to balance production lost to Bythotrephes
consumption later in the season. The effects of Bythotrephes on whole lake productivity may be

moderated by behavioural shifts in zooplankton abundance to the cool dark waters of the
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hypolimnion and/or increased abundance of hypolimnetic species, and consequently, increased
production in the hypolimnion of some lakes. Bythotrephes cannot compensate for the declines in
biomass production observed in invaded lakes, as it generated <6% of total zooplankton
production. Our study provides compelling evidence that Bythotrephes can alter the flow of
energy in parts of freshwater lakes, but may leave other measures of ecosystem function relatively
unaffected. Changes in energy flow will likely have implications for growth and reproduction of
other trophic levels in the food web, including macroinvertebrates, planktivorous fish, and young-

of-year piscivorous fish, since these organisms all rely on zooplankton as a major food source.

Zooplankton Production

There was a significant decrease in epilimnetic zooplankton production in lakes invaded by
Bythotrephes. This was likely the result of significant reductions in zooplankton abundance in the
epilimnion, as there was no difference in other factors that influence productivity, such as egg
production, chlorophyll @, and temperature, in invaded lakes compared to non-invaded lakes.
Although previous studies have observed declines in overall zooplankton abundance (Yan and
others 2001; Strecker and others 2006), this is the first study to detect negative effects of
Bythotrephes on epilimnetic zooplankton production in multiple lakes and reduced production in
several functional groups (calanoids, cyclopoids, and small cladocerans) within the epilimnion.
The substantial declines in epilimnetic production are likely the result of a combination of direct
predation on zooplankton by Bythotrephes, as well as behavioural shifts away from the epilimnion
to cooler darker habitat. Although we cannot determine the relative importance of predation
versus migration, what remains is that the epilimnion of lakes has dramatically changed following
the invasion of Bythotrephes, and that there is significantly less productivity available to foraging

species. Although few studies exist that compare secondary productivity across different
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predatory regimes, our results are similar in magnitude to those observed in a fish biomanipulation
experiment, where the introduction of piscivores into a piscivore-free lake resulted in reductions in
planktivorous fish, increased biomass of the native invertebrate predator Chaoborus, and
significant declines in zooplankton productivity (Ramcharan and others 2001). This suggests that
the introduction of non-native species can act in an analogous fashion to the complete restructuring
of a lake food web by the introduction of a top predator.

We observed an increase in productivity in the hypolimnion in some invaded lakes, which
likely results from predator-induced habitat shifts. As discussed above, diel vertical migrations of
zooplankton can confound estimations of secondary productivity. However, it is unlikely that
these migrations influenced our estimates of epilimnetic or hypolimnetic production because we
have no evidence that zooplankton migrated downwards from the epilimnion at night, and
zooplankton migration upwards from the hypolimnion at night was minor (S. Arnott ,
unpublished). However, we may have underestimated metalimnetic production in invaded lakes,
as diel migrations from the warmer epilimnion at night to the cooler metalimnion during the day
may be a response of some zooplankton taxa to Bythotrephes. Dumitru and others (2001)
examined the effect of Bythotrephes on whole water column zooplankton production in a single
lake, and therefore did not consider the spatial distribution of production. Pangle and Peacor
(2006) and Pangle and others (2007) demonstrated that Bythotrephes can induce cladoceran taxa to
migrate into the hypolimnion to avoid predation, with significant costs as a result of exposure to
cooler temperatures: our results extend their findings to the entire zooplankton community over a
greater part of the ice-free season. The non-lethal costs of these migrations may be substantial.
Using Harp Lake as an example, we estimate that epilimnetic production would be about 44%

greater if ~50% of zooplankton (based on differences in hypolimnetic abundance between Harp
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and reference lakes) in the hypolimnion of Harp Lake are epilimnetic species that have
behaviourally shifted habitats to avoid Bythotrephes.

There was considerable among-lake variability in response to the invasion of Bythotrephes.
Although the hypolimnion of some invaded lakes made substantial (> 25%) contributions to total
seasonal productivity, the hypolimnion contributed very little to overall productivity in other
invaded lakes (<4%). This variability in invaded lakes may be partly due to differing planktivore
communities. Planktivores may influence the vertical distribution of Bythotrephes, which may, in
turn, influence the distribution of zooplankton. A concurrent study in two of our invaded lakes
revealed that Bythotrephes distribution is indeed related to the presence of the cold-water
planktivore, cisco (Young and Yan 2008), suggesting that other components of the food web may
mediate the effects of Bythotrephes on crustacean zooplankton.

In addition to spatial shifts in productivity, we observed seasonal shifts in invaded lakes
during periods when Bythotrephes was not present, i.€., in the spring before population growth
rates increase. In three of the four invaded lakes, there was a large pulse in small cladoceran
epilimnetic production early in the season, likely from above average egg production per
individual small cladoceran in two of the invaded lakes, in combination with greater abundances in
May and early June. This suggests that small cladocerans may alter their life history, at least in
some lakes, by shifting reproduction to earlier in the season to avoid the invader. This is in
agreement with another field study, where temporal shifts in copepod egg production were
observed as a result of the presence of a fish predator (Hairston Jr. and Walton 1986).

Increased production of other intermediate trophic levels may offset reduced epilimnetic
crustacean production. For instance, rotifers were more abundant in lakes invaded by
Bythotrephes, especially the colonial Conochilus (Hovius and others 2006), which has high

intrinsic rates of increase (Allan 1976) and is probably an inedible prey item for Bythotrephes.
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However, rotifers likely do not substitute for crustacean zooplankton as prey for fish (Threlkeld
1988). In addition, Sherwood and others (2002) showed that the lack of large-bodied prey groups
could reduce the efficiency of energy transfer to fish in metal-polluted lakes with simplified food
webs, implying that the loss of typical prey in invaded lakes may prevent higher trophic levels
from reaching their normal body size.

The spatial, temporal, and taxonomic redistribution of secondary production in
Bythotrephes-invaded lakes will likely have important implications for aquatic food webs. Shifts
in zooplankton reproduction from the epilimnion to the hypolimnion may negatively affect
epilimnetic-feeding fish species that rely on zooplankton, such as larval cisco, which inhabit
surface waters (Oyadomari and Auer 2004), and are highly reliant on crustaceans as their prey
(Davis and Todd 1998). In addition, cold-water planktivores (i.e., adult cisco), would be unlikely
to benefit from this shift since they have reduced foraging success in poorly-lit waters (Milne and
others 2005) and tend to prefer temperatures around 12°C (Rudstam and Magnuson 1985), which

falls into the metalimnion in most of our lakes.

Impact of Zooplankton on Phytoplankton

Despite experimental results that were suggestive of reduced control of the algal
community by the zooplankton community, we did not observe the expected changes in
phytoplankton biomass (as measured by chlorophyll @) at the lake-level in Bythotrephes-invaded
lakes. Even though low productivity lakes, such as those in our study, are predicted to be
influenced more by bottom-up, rather than top-down, forces (Jeppeson and others 2003),
significant effects of zooplankton on phytoplankton biomass have been observed in other
oligotrophic lakes (Sarnelle and Knapp 2005). The weak overall effects of zooplankton on

phytoplankton echo the experimental results of Sommer and others (2001), where increased
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417  abundance of zooplankton functional groups had no effect on total phytoplankton biomass. Pérez-
418  Fuentetaja and others (2000) also found that zooplankton had a weak influence on chlorophyll in
419  oligo- and meso-trophic lakes. Thus, it appears that the invasion of Bythotrephes will probably not
420  have a large cascading effect on phytoplankton biomass in lower productivity lakes, despite large
421  reductions in epilimnetic zooplankton biomass (>70%). However, more productive lakes may be
422 more likely to respond to top-down changes (Jeppesen and others 2003), and although

423 Bythotrephes seems to prefer oligotrophic lakes, it has been found in some mesotrophic systems
424  (Jarnagin and others 2000), suggesting that the invader may have the potential to instigate

425  increases in algal biomass in lakes of moderate productivity.

426
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578  APPENDIX 1. Planktivorous fish and Mysis relicta categorical abundance in study lakes. Fish data
579  provided by Ontario Ministry of Natural Resources (unpublished) and Mysis data from Nordin

580  (2005). Lakes sorted by increasing Bythotrephes abundance.

Cisco Rainbow Lake Yellow
smelt whitefish perch Mysis
Lake (Coregonus .
artedi) (Osmerus  (Coregonus (Perca relicta
mordax)  clupeaformis) flavescens)
Not Invaded
Buck A/P A A P H
Doe L A L P L
Pickerel L A/P A P H
Sand L H A P L
Invaded
Harp H A A P M
Vernon A M A P L
Bernard A/P L/M H P L
Peninsula A M A P M
581 A =absent L =low
582  A/P = absent, but detected in past M= medium
583 P =present H = high

584
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587  Nordin, LJ. 2005. The impact of Bythotrephes longimanus on the diet, growth and energy storage
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FIGURE CAPTIONS

Figure 1. Total secondary production (mg m™ season™) of Bythotrephes (M) and zooplankton in
the epilimnion (L), metalimnion (), and hypolimnion (M) of invaded and reference lakes. For

the purposes of our study, we define the season as the middle of May to the middle of September.

Figure 2. On the left axis, average secondary production of zooplankton of invaded ([]) and
reference (M) lakes (mg m™ fortnight™") and on the right axis, average seasonal production (mg m™
season”) of invaded ((J) and reference (M) lakes in the (a) epilimnion, (b) metalimnion, and (c)
hypolimnion (n = 4, except reference lake hypolimnion where n = 3). Production is calculated
from two adjacent sampling dates, so the value shown represents that of the following two-week
interval, i.e. the value from the middle of May represents the sampling period from then until early
June. Sampling occurred approximately fortnightly (mean: 13.5 days) and we define the season as

the middle of May to the middle of September. Error bars are £1 standard error.

Figure 3. Average biweekly secondary production (mg m™ fortnight™") in calanoids (a-c),
cyclopoids (d-f), large cladocerans (g-1), and small cladocerans (j-1) in the epi-, meta-, and
hypolimnion of invaded ([]) and reference (M) lakes (n = 4, except reference lake hypolimnion
where n = 3). Sampling occurred approximately fortnightly (mean: 13.5 days). Error bars are +1

standard error.

Figure 4. Average abundance of small cladocerans, large cladocerans, cyclopoids, and calanoids

(individuals L) in the epilimnion (a-b), metalimnion (c-d), and hypolimnion (e-f) of invaded and

reference lakes.
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Figure 5. Average number of eggs individual™ of entire zooplankton community in each strata in
invaded ([J) and reference (M) lakes (left column: a,d,g) and for each functional group in the
epilimnion (b,c), metalimnion (e,f), and hypolimnion (h,i) of invaded and reference lakes (n =4,
except reference lake hypolimnion where n = 3). Error bars are £1 standard error. Note that the
ratio of eggs to individuals for separate functional groups does not sum to equal the average of the

entire community as a result of different densities of zooplankton in each group.

Figure 6. Epi- and metalimnetic zooplankton production (¢; mg m™ fortnight) and Bythotrephes
consumption (M; mg m™ fortnight™) in invaded lakes, contrasted with Bythotrephes abundance
(A\; individuals m™) on the rightaxis. In each panel, the top bracketed value is the percent of total
seasonal zooplankton production consumed by Bythotrephes, and the bottom bracketed value is
the percent of seasonal production consumed by Bythotrephes starting in the middle of June.
Asterisk (%) indicates the dates on which Bythotrephes consumption exceeded zooplankton

production. Sampling occurred approximately fortnightly (mean: 13.5 days).

Figure 7. (a) Percent change in algae during zooplankton impact experiment in invaded (L1; n = 2)
and reference lakes (l; n = 3). Positive values indicate that phytoplankton increased during the
experiment, while negative numbers indicate a decrease in algae. (b) Total chlorophyll a (ug L")

of all invaded ([]) and reference (M) lakes (n = 4). Error bars are +1 standard error.
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TABLE CAPTIONS

Table 1. Morphometric, physical, chemical, and biotic characteristics of study lakes. A one-way
ANOVA was performed on parameters (n = 4, treatment df = 1, error df = 6). Lakes sorted by
increasing Bythotrephes abundance. Lat = latitude, long = longitude, Z,,x = maximum depth, Ca =
calcium, DOC = dissolved organic carbon, Cond = conductivity, TP = total phosphorus, chl a =

chlorophyll a.

Table 2. Repeated measures ANOVAs on stratified and whole water column zooplankton
secondary production, total zooplankton abundance, and eggs individual’. The mean effect size of
production is calculated by summing all the sampling dates and then averaging between lakes in
each category. The mean effect size of abundance and eggs individual™ is calculated by averaging

all of the lakes in each category on all dates.

Table 3. Repeated measures ANOV As on zooplankton secondary production for each functional
group. The mean effect size of production is calculated by summing all the sampling dates and

then averaging between lakes in each category.

Table 4. Repeated measures ANOV As on zooplankton egg production per individual for each

functional group. The mean effect size is calculated by averaging all of the lakes in each category

on all dates
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657 TABLE 1.

Cond Mean
Lake Lat 7 max Area Ca DOC (umhos o TP total
Long  (m)  (ha) (mgL') (mgL') 00 PR ey chla
cm) ]
(ngl™)
Reference
45°25'N
% s
Buck 79993 "W 23.0 656.0 2.6 10.7 25.6 6.3 13.3 2.8
45°32'N
% s
Doe 79995 W 23.0 1187.0 3.6 7.0 46.0 7.1 12.0 3.4
: 45°41'N
% )
Pickerel 79918"W 38.0 513.0 2.8 6.7 32.4 6.8 8.1 4.4
45°37'N,
Sand 79910 W 59.0 568.2 35 6.0 37.2 6.8 7.1 2.0
Mean 35.8 731.1 3.1 7.6 353 6.8 10.1 3.1
Invaded
45°23'N
% )
Harp 79907 W 37.5 71.7 3.0 6.7 38.0 7.0 7.2 1.7
45°20'N
% )
Vernon 79917 W 37.2  1505.1 3.0 7.1 36.8 6.8 7.9 2.8
45°45'N,
Bernard 79993 "W 479  2057.7 4.1 3.4 65.2 7.1 9.6 2.8
) 45°20'N,
Peninsula 79906 W 34.1 864.8 4.4 6.1 70.6 7.1 9.0 2.6
Mean 392 11248 3.6 5.8 52.7 7.0 8.4 2.5
F-ratio 0.14 0.75 1.04 1.74 3.10 1.96 1.16 1.51
p-value 0.72 0.42 0.35 0.23 0.13 0.21 0.32 0.27

658  *lakes included in grazing experiment

659
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660 TABLE?2.

Invasion Time Time x Invasion Mean
Measure Stratum effect
a a size
Fig p Fr4 % Fr4 p

Epilimnion 9.68  0.02*  2.13 011 131 029  -67%
Secondary ~ Metalimnion ~ 0.03  0.87 519 <0.01* 058 075  +15%
production  Hypolimnionf 3.46  0.12 1.77 0.13 043 088  +766%

All strata 124 031 1.85 0.14 064 065  -35%

Epilimnion 1691 <0.01* 17.48 <0.01* 6.55 <0.01* -59%

Total Metalimnion ~ 0.80 040  8.08  <0.01* 080 056  +55%
abundance  Hypolimnionf 1.78 024  4.02  <0.01* 050 085 +137%
All strata 042 054  12.03 <0.01* 080 061  -17%

Epilimnion 1.90 0.22 1.56 0.19 1.06 0.41 -17%

i%ﬁ’ii ! Metalimnion 001 091 2.86 0.08t 0.19 088  +10%
Hypolimnion} 6.04  0.06t  4.70 0.02* 163 023  +213%
All strata 174 024 358  <0.01* 152 020  -20%

661  *p<0.051p<0.10

662  f Invasion error df = 5, Time X Invasion error df = 35; total abundance Time x Invasion
663  error df =40

664  ° total abundance: Fg s
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665

666
667
668

TABLE 3.
Functional Invasion Time Time x Mean
Stratum unctiona Invasion effect
group K
Fig p Fr4 p Fr4 p S1z¢
calanoids 1050  0.02* 3.95 <0.01* 077  0.62 -90%
cyclopoids 54.02 <0.01* 4.10 <0.01* 1.64  0.17 -57%
Epilimnion large 248 0.17 162 021 0.14 0095 -61%
cladocerans
small 2497 <0.01* 345  0.02* 545 <0.01*  -17%
cladocerans
calanoids 271  0.15 379  0.02* 053 071  +250%
cyclopoids  0.05 0.83 4.61 0.01* 0.56 0.65 +45%
Metalimnion large 207 020 401 <0.01* 212  0.07f  -90%
cladocerans
small 004 085 164 019 147 024  +96%
cladocerans
calanoids 9.70 0.03* 1.15 0.36 0.43 0.81 +61%
cyclopoids 0.35 0.58 548 <0.01* 1.97 0.09f  +964%
Hypolimnionj large 057 048 208 017 052  0.61 +6188%
cladocerans
small 003 088 177 0.8 079  0.53 4%
cladocerans

*p<0.05,17p<0.10
I Invasion error df = 5, Time X Invasion error df = 35
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669

670
671
672
673

TABLE 4.
Functional Invasion Time Time Mean
Stratum unctiona Invasion effect
group K
Fig p Fr4 p Fr4 p S1z€
calanoids  3.15  0.13 1.16 035 101 040 “72%
cyclopoids 0.0 092 095 040 137 029 7%
Epilimnion ~ large 065 045 242 009t 067 0.59 75%
cladocerans
small 002 08 258 005* 041 082 4%
cladocerans
calanoids  3.02 0.13 061 054 071 049 295%
cyclopoids  0.09 077 259 0.2 008 092 -17%
Metalimnion ~ large 190 022 126 032 040 0.77 -54%
cladocerans
small 007 080 301 005* 155 023 11%
cladocerans
calanoids 254 0.17 095 044 051  0.69 253%
cyclopoids  4.04  0.10f 492 0.03* 344 007+ 157%
Hypolimnion} large 0.01  0.99 120 034 126 033 2%
cladocerans
small 120 032  3.12 0.08F 1.06 039 67%
cladocerans

*p<0.05,17p<0.10
I Invasion error df = 5, Time X Invasion error df = 35
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