29 research outputs found

    Consistency and differences between centrality measures across distinct classes of networks

    Full text link
    The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and such whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.Comment: Main text (25 pages, 8 figures, 1 table), supplementary information (16 pages, 2 tables) and supplementary figures (17 figures

    Spectral signatures of reorganised brain networks in disorders of consciousness.

    Get PDF
    Theoretical advances in the science of consciousness have proposed that it is concomitant with balanced cortical integration and differentiation, enabled by efficient networks of information transfer across multiple scales. Here, we apply graph theory to compare key signatures of such networks in high-density electroencephalographic data from 32 patients with chronic disorders of consciousness, against normative data from healthy controls. Based on connectivity within canonical frequency bands, we found that patient networks had reduced local and global efficiency, and fewer hubs in the alpha band. We devised a novel topographical metric, termed modular span, which showed that the alpha network modules in patients were also spatially circumscribed, lacking the structured long-distance interactions commonly observed in the healthy controls. Importantly however, these differences between graph-theoretic metrics were partially reversed in delta and theta band networks, which were also significantly more similar to each other in patients than controls. Going further, we found that metrics of alpha network efficiency also correlated with the degree of behavioural awareness. Intriguingly, some patients in behaviourally unresponsive vegetative states who demonstrated evidence of covert awareness with functional neuroimaging stood out from this trend: they had alpha networks that were remarkably well preserved and similar to those observed in the controls. Taken together, our findings inform current understanding of disorders of consciousness by highlighting the distinctive brain networks that characterise them. In the significant minority of vegetative patients who follow commands in neuroimaging tests, they point to putative network mechanisms that could support cognitive function and consciousness despite profound behavioural impairment.This work was supported by grants from the Wellcome Trust [WT093811MA to T.B.]; the James S. McDonnell Foundation [to A.M.O. and J.D.P.]; the UK Medical Research Council [U.1055.01.002.00001.01 to A.M.O. and J.D.P.]; the Canada Excellence Research Chairs program [to A.M.O.]; the National Institute for Health Research Cambridge Biomedical Research Centre [to J.D.P.]; and the National Institute for Health Research Senior Investigator and Healthcare Technology Cooperative awards [to J.D.P.].This is the final version of the article. It first appeared from PLOS via http://dx.doi.org

    A case-control genome-wide association study of ADHD discovers a novel association with the tenascin R (TNR) gene

    Get PDF
    This work has been supported by Project Grant funding from the National Health and Medical Research Council (NHMRC) of Australia to Z.H. (1006573, 1002458 and 1065677) and M.A.B. (569636, 1065677, 1045354, 1002458 and 1006573).It is well-established that there is a strong genetic contribution to the aetiology of attention deficit hyperactivity disorder (ADHD). Here, we employed a hypothesis-free genome-wide association study (GWAS) design in a sample of 480 clinical childhood ADHD cases and 1208 controls to search for novel genetic risk loci for ADHD. DNA was genotyped using Illumina’s Human Infinium PsychArray-24v1.2., and the data were subsequently imputed to the 1000 Genomes reference panel. Rigorous quality control and pruning of genotypes at both individual subject and single nucleotide polymorphism (SNP) levels was performed. Polygenic risk score (PGRS) analysis revealed that ADHD case–control status was explained by genetic risk for ADHD, but no other major psychiatric disorders. Logistic regression analysis was performed genome-wide to test the association between SNPs and ADHD case–control status. We observed a genome-wide significant association (p = 3.15E−08) between ADHD and rs6686722, mapped to the Tenascin R (TNR) gene. Members of this gene family are extracellular matrix glycoproteins that play a role in neural cell adhesion and neurite outgrowth. Suggestive evidence of associations with ADHD was observed for an additional 111 SNPs (⩽9.91E−05). Although intriguing, the association between DNA variation in the TNR gene and ADHD should be viewed as preliminary given the small sample size of this discovery dataset.Publisher PDFPeer reviewe

    Bridging the gap between transcriptome and connectome

    No full text
    The recent construction of brain-wide gene expression atlases, which measure the transcriptional activity of thousands of genes in many different anatomical locations, has made it possible to connect spatial variations in gene expression to distributed properties of connectome structure and function. These analyses have revealed that spatial patterning of gene expression and neuronal connectivity are closely linked, following broad spatial gradients that track regional variations in microcircuitry, inter-regional connectivity and functional specialization. Superimposed on these gradients are more specific associations between gene expression and connectome topology that appear conserved across diverse species and resolution scales. These findings highlight the utility of brain-wide gene expression atlases for bridging the gap between molecular function and large-scale connectome organization in health and disease

    Impact of CYP2C19 genotype-predicted enzyme activity on hippocampal volume, anxiety, and depression

    No full text
    Cytochrome P450 C19 (CYP2C19) metabolizes exogenous and endogenous compounds. Although CYP2C19 is highly expressed in the liver, it is also expressed in the brain during early life. Previous human and animal studies have linked CYP2C19 genotype-predicted enzyme activity to hippocampal volumes, depressive symptoms, and anxiety-like behaviors. We examined these promising associations in a general community sample comprising 386 Caucasian adults with no history of psychiatric or neurological illnesses. Contrary to previous findings, CYP2C19 genotype-predicted enzyme activity was not associated with hippocampal volumes, nor depressive and anxiety symptoms. Interstudy differences in CYP2C19 frequencies and/or study methodology may explain this discrepancy

    Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape

    Get PDF
    Brain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles or MRI-derived estimates of myeloarchitecture. We further show that regional transcriptional heterogeneity is essential for yielding both ignition-like dynamics, which are thought to support conscious processing, and a wide variance of regional-activity time scales, which supports a broad dynamical range. We thus identify a key role for E:I heterogeneity in generating complex neuronal dynamics and demonstrate the viability of using transcriptomic data to constrain models of large-scale brain function.G.D. is supported by a Spanish national research project (ref. PID2019-105772GB-I00 MCIU AEI) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI); HBP SGA3 Human Brain Project Specific Grant Agreement 3 (grant agreement no. 945539), funded by the EU H2020 FET Flagship programme; SGR Research Support Group support (ref. 2017 SGR 1545), funded by the Catalan Agency for Management of University and Research Grants (AGAUR); Neurotwin Digital twins for model-driven non-invasive electrical brain stimulation (grant agreement ID: 101017716) funded by the EU H2020 FET Proactive programme; euSNN European School of Network Neuroscience (grant agreement ID: 860563) funded by the EU H2020 MSCA-ITN Innovative Training Networks; CECH The Emerging Human Brain Cluster (Id. 001-P-001682) within the framework of the European Research Development Fund Operational Program of Catalonia 2014-2020; Brain-Connects: Brain Connectivity during Stroke Recovery and Rehabilitation (id. 201725.33) funded by the Fundacio La Marato TV3; Corticity, FLAG–ERA JTC 2017, (ref. PCI2018-092891) funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI). M.L.K. is supported by Center for Music in the Brain, funded by the Danish National Research Foundation (DNRF117); and Centre for Eudaimonia and Human Flourishing, funded by the Pettit and Carlsberg Foundations. AF was supported by the Sylvia and Charles Viertel Charitable Foundation and National Health and Medical Research Council (ID: 3251549). This work was supported by the computational infrastructure provided by the MASSIVE HPC facility (www.massive.org.au)

    A case-control genome-wide association study of ADHD discovers a novel association with the tenascin R (TNR) gene

    Get PDF
    Contains fulltext : 200424.pdf (publisher's version ) (Open Access

    Genetic influences on hub connectivity of the human connectome

    Get PDF
    Brain network hubs are both highly connected and highly inter-connected, forming a critical communication backbone for coherent neural dynamics. The mechanisms driving this organization are poorly understood. Using diffusion-weighted magnetic resonance imaging in twins, we identify a major role for genes, showing that they preferentially influence connectivity strength between network hubs of the human connectome. Using transcriptomic atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen generative models of network growth, we show that purely stochastic processes cannot explain the precise wiring patterns of hubs, and that model performance can be improved by incorporating genetic constraints. Our findings indicate that genes play a strong and preferential role in shaping the functionally valuable, metabolically costly connections between connectome hubs
    corecore