123 research outputs found
Three-dimensional structure of Mach cones in monolayer complex plasma
Structure of Mach cones in a crystalline complex plasma has been studied
experimentally using an intensity sensitive imaging, which resolved particle
motion in three dimensions. This revealed a previously unknown out-of-plane
cone structure, which appeared due to excitation of the vertical wave mode. The
complex plasma consisted of micron sized particles forming a monolayer in a
plasma sheath of a gas discharge. Fast particles, spontaneously moving under
the monolayer, created Mach cones with multiple structures. The in-plane cone
structure was due to compressional and shear lattice waves.Comment: Accepted for publication in Physical Review Letter
Comparison between carbon dust produced in laboratory plasmas and in Tore Supra
12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)Laboratory experiments are proposed to understand the growth mechanisms of spherical carbonaceous dust observed in Tokamaks with inside wall elements in graphite materials. The sputtering process is used to form continuous carbon vapours. Their cooling in the plasmas gives rise to carbon clusters which size goes increasing with time. In the nanometer scale range, the obtained primary particles are spherical. They can also agglomerate in the plasma likely by coulomb attraction and form spherical aggregates of higher size. A comparison between the carbon structure of these dust grains and of some dust samples collected on the toroïdal pumped limiter surface of Tore Supra is also proposed. The differences are discussed
Laringuectomía total y traqueostomía permanente en un perro, por un adenocarcinoma laríngeo infraglótico
Perra Rottweiler de 8 años de edad con historial de cansancio progresivo y dificultad respiratoria. Tras una exploración física y radiológica se sospechó la presencia de una masa en la luz de la laringe que se confirmó con la exploración directa. Se realizó una citología y el informe anatomopatológico indicó que presumiblemente se trataba de una neoplasia de carácter maligno. Se realizó una laringuectomía total conjuntamente con una traqueostomía permanente. La evolución fue satisfactoria pero a los 12 días del alta, el paciente falleció de muerte súbita
Radiometric force in dusty plasmas
A radiofrequency glow discharge plasma, which is polluted with a certain
number of dusty grains, is studied. In addition to various dusty plasma
phenomena, several specific colloidal effects should be considered. We focus on
radiometric forces, which are caused by inhomogeneous temperature distribution.
Aside from thermophoresis, the role of temperature distribution in dusty
plasmas is an open question. It is shown that inhomogeneous heating of the
grain by ion flows results in a new photophoresis like force, which is specific
for dusty discharges. This radiometric force can be observable under conditions
of recent microgravity experiments.Comment: 4 pages, amsmat
On the Wake Structure in Streaming Complex Plasmas
The theoretical description of complex (dusty) plasmas requires multiscale
concepts that adequately incorporate the correlated interplay of streaming
electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust
interaction, the multiscale problem can be effectively reduced to a
one-component plasma model of the dust subsystem. The goal of the present
publication is a systematic evaluation of the electrostatic potential
distribution around a dust grain in the presence of a streaming plasma
environment by means of two complementary approaches: (i) a high precision
computation of the dynamically screened Coulomb potential from the dynamic
dielectric function, and (ii) full 3D particle-in-cell simulations, which
self-consistently include dynamical grain charging and non-linear effects. The
applicability of these two approaches is addressed
Nanostructuring of molybdenum and tungsten surfaces by low-energy helium ions
The formation of metallic nanostructures by exposure of molybdenum and tungsten surfaces to high fluxes of low energy helium ions is studied as a function of the ion energy, plasma exposure time, and surface temperature. Helium plasma exposure leads to the formation of nanoscopic filaments on the surface of both metals. The size of the helium-induced nanostructure increases with increasing surface temperature while the thickness of the modified layer increases with time. In addition, the growth rate of the nanostructured layer also depends on the surface temperature. The size of the nanostructure appears linked with the size of the near-surface voids induced by the low energy ions. The results presented here thus demonstrate that surface processing by low-energy helium ions provides an efficient route for the formation of porous metallic nanostructures. (C) 2012 American Vacuum Society.</p
Cross machine investigation of magnetic tokamak dust : Morphological and elemental analysis
The presence of magnetic dust can be an important issue for future fusion reactors where plasma breakdown is critical. Magnetic dust has been collected from contemporary fusion devices (FTU, Alcator C-Mod, COMPASS and DIII-D) that feature different plasma facing components. The results of morphological and elemental analysis are presented. Magnetic dust is based on steel or nickel alloys and its magnetism is generated by intense plasma-material interactions. In spite of the strong similarities in terms of morphology and composition, X-ray diffraction analysis revealed differences in the structural evolution that leads to non-trivial magnetic responses
Parametrization of nonlinear and chaotic oscillations in driven beam-plasma diodes
Nonlinear phenomena in a driven plasma diode are studied using a fluid code and the particle-in-cell simulation code XPDPI. When a uniform electron beam is injected to a bounded diode filled with uniform ion background, the beam is destabilized by the Pierce instability and a perturbation grows to exhibit nonlinear oscillations including chaos. Two standard routes to chaos, period doubling and quasiperiodicity, are observed. Mode lockings of various winding numbers are observed in an ac driven system. A new diagnostic quantity is used to parametrize various nonlinear oscillations.open10
Development and validation of Videogame Addiction Scale for Children (VASC)
The aim of the present study was to develop a valid and reliable Videogame Addiction Scale for Children (VASC). The data were derived from 780 children who completed the Videogame Addiction Scale (405 girls and 375 boys; 48.1% ranging in age from 9 to 12 years). The sample was randomly split into two different sub-samples (sample 1, n=400; sample 2, n= 380). Sample 1 was used to perform exploratory factor analysis (EFA) to define the factorial structure of VASC. As a result of EFA, a four-factor structure comprising 21 items was obtained and explained 55% of the total variance (the four factors being "self-control," "reward/reinforcement", "problems," and "involvement"). The internal consistency reliability of VASC has found 0.89. Confirmatory factor analysis (CFA) was performed to confirm the factorial structure obtained by EFA in the remaining half of sample (n= 390). The obtained fit indices from the CFA confirmed the structure of the EFA. The 21-item VASC has good psychometric properties that can be used among Turkish schoolchildren populations
- …