39 research outputs found

    Unique genes in plants: specificities and conserved features throughout evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant genomes contain a high proportion of duplicated genes as a result of numerous whole, segmental and local duplications. These duplications lead up to the formation of gene families, which are the usual material for many evolutionary studies. However, all characterized genomes include single-copy (unique) genes that have not received much attention. Unlike gene duplication, gene loss is not an unspecific mechanism but is rather influenced by a functional selection. In this context, we have established and used stringent criteria in order to identify suitable sets of unique genes present in plant proteomes. Comparisons of unique genes in the green phylum were used to characterize the gene and protein features exhibited by both conserved and species-specific unique genes.</p> <p>Results</p> <p>We identified the unique genes within both <it>A. thaliana </it>and <it>O. sativa </it>genomes and classified them according to the number of homologs in the alternative species: none (U{1:0}), one (U{1:1}) or several (U{1:m}). Regardless of the species, all the genes in these groups present some conserved characteristics, such as small average protein size and abnormal intron number. In order to understand the origin and function of unique genes, we further characterized the U{1:1} gene pairs. The possible involvement of sequence convergence in the creation of U{1:1} pairs was discarded due to the frequent conservation of intron positions. Furthermore, an orthology relationship between the two members of each U{1:1} pair was strongly supported by a high conservation in the protein sizes and transcription levels. Within the promoter of the unique conserved genes, we found a number of TATA and TELO boxes that specifically differed from their mean number in the whole genome. Many unique genes have been conserved as unique through evolution from the green alga <it>Ostreococcus lucimarinus </it>to higher plants. Plant unique genes may also have homologs in bacteria and we showed a link between the targeting towards plastids of proteins encoded by plant nuclear unique genes and their homology with a bacterial protein.</p> <p>Conclusion</p> <p>Many of the <it>A. thaliana </it>and <it>O. sativa </it>unique genes are conserved in plants for which the ancestor diverged at least 725 million years ago (MYA). Half of these genes are also present in other eukaryotic and/or prokaryotic species. Thus, our results indicate that (i) a strong negative selection pressure has conserved a number of genes as unique in genomes throughout evolution, (ii) most unique genes are subjected to a low divergence rate, (iii) they have some features observed in housekeeping genes but for most of them there is no functional annotation and (iv) they may have an ancient origin involving a possible gene transfer from ancestral chloroplasts or bacteria to the plant nucleus.</p

    New designs of the ceramic bricks of horizontal hexagonal hollow

    Get PDF
    This article is intended to state that Technical Drawing is a multiple tool of expression and communication essential to develop inquiry processes, the scientifically basis and comprehension of drawings and technological designs that can be manufactured. We demonstrate graphically and analytically that spatial vision and graphic thinking allow us to identify graphically real life problems, develop proposals of solutions to be analysed from different points of view, plan and develop the project, provide information needed to make decisions on objects and technological processes. From the knowledge of Technical Drawing and CAD tools we have developed graphic analyses to improve and optimize our proposed modification of the geometry of the rectangular cells of conventional bricks by hexagonal cells, which is protected by a Spanish patent owned by the Polytechnic University of Madrid. This new internal geometry of the bricks will improve the efficiency and the acoustic damping of walls built with the ceramic bricks of horizontal hollow, maintaining the same size of the conventional bricks, without increasing costs either in the manufacture and the sale. A single brick will achieve the width equivalent to more than FOUR conventional bricks

    Molecular Evolutionary Trends and Feeding Ecology Diversification in the Hemiptera, Anchored by the Milkweed Bug Genome

    Get PDF
    Background: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. Results: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. Conclusions: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus’s strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes

    Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically.</p> <p>Results</p> <p>We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in <it>Saccharomyces cerevisiae</it>. We found additional genes for the mating pheromone a-factor in six species including <it>Kluyveromyces lactis</it>.</p> <p>Conclusions</p> <p>SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external information has been added may prove useful in other settings.</p

    FIDEL—a retrovirus-like retrotransposon and its distinct evolutionary histories in the A- and B-genome components of cultivated peanut

    Get PDF
    In this paper, we describe a Ty3-gypsy retrotransposon from allotetraploid peanut (Arachis hypogaea) and its putative diploid ancestors Arachis duranensis (A-genome) and Arachis ipaënsis (B-genome). The consensus sequence is 11,223 bp. The element, named FIDEL (Fairly long Inter-Dispersed Euchromatic LTR retrotransposon), is more frequent in the A- than in the B-genome, with copy numbers of about 3,000 (±950, A. duranensis), 820 (±480, A. ipaënsis), and 3,900 (±1,500, A. hypogaea) per haploid genome. Phylogenetic analysis of reverse transcriptase sequences showed distinct evolution of FIDEL in the ancestor species. Fluorescent in situ hybridization revealed disperse distribution in euchromatin and absence from centromeres, telomeric regions, and the nucleolar organizer region. Using paired sequences from bacterial artificial chromosomes, we showed that elements appear less likely to insert near conserved ancestral genes than near the fast evolving disease resistance gene homologs. Within the Ty3-gypsy elements, FIDEL is most closely related with the Athila/Calypso group of retrovirus-like retrotransposons. Putative transmembrane domains were identified, supporting the presence of a vestigial envelope gene. The results emphasize the importance of FIDEL in the evolution and divergence of different Arachis genomes and also may serve as an example of the role of retrotransposons in the evolution of legume genomes in general

    The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water.

    Get PDF
    BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders

    Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome.

    Get PDF
    BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes

    Unique genes in plants : features, evolution and promoters

    No full text
    Les objectifs de la thĂšse Ă©taient (i) de mettre en Ă©vidence les pressions de sĂ©lection qui s’exercent sur les gĂšnes orthologues chez les vĂ©gĂ©taux et (ii) de cerner les caractĂ©ristiques structurales et fonctionnelles qu’ils partagent, notamment au niveau de leurs promoteurs, pour (iii) dĂ©finir une nouvelle dĂ©marche d’empreinte phylogĂ©nĂ©tique. Pour s’appuyer sur des relations d’orthologie les moins ambiguĂ«s possibles, l’étude a Ă©tĂ© centrĂ©e sur les gĂšnes ‘uniques’ dĂ©finis par comparaison de sĂ©quences. Les gĂšnes uniques forment 3 groupes structurellement, fonctionnellement et Ă©volutivement distincts. Les gĂšnes uniques spĂ©cifiques soit d’Arabidopsis thaliana soit d’Oryza sativa prĂ©sentent des caractĂ©ristiques diffĂ©rentes des gĂšnes uniques conservĂ©s, y compris au niveau de leur promoteur. D’une part, les gĂšnes uniques spĂ©cifiques Ă  une espĂšce sont prĂ©fĂ©rentiellement des gĂšnes codant pour des peptides excrĂ©tĂ©s et impliquĂ©s dans des fonctions de rĂ©gulation. D’autre part, les gĂšnes uniques conservĂ©s ont des caractĂ©ristiques qui les associent aux gĂšnes impliquĂ©s dans les fonctions du mĂ©tabolisme de base des cellules et qui Ă©voluent lentement. Certains motifs potentiellement rĂ©gulateurs ont Ă©tĂ© trouvĂ©s spĂ©cifiquement sur-representĂ©s dans leur promoteur. Par ailleurs, ces gĂšnes, quand ils sont dupliquĂ©s, retournent rapidement Ă  l’état unique, suggĂ©rant un fort dĂ©savantage sĂ©lectif Ă  l’existence simultanĂ©e de deux copies peu divergentes de ces gĂšnes.The main objectives of this thesis were (i) to search for the selection pressure exerted on plant orthologous genes and (ii) to describe the structural and functional features they share in particular in their promoters, in order to (iii) define a novel phylogenetic footprinting approach. Pairs of unique genes, defined by sequence comparisons, have been used because they were considered as having the greater chance to be true orthologues. Plant unique genes form three groups of genes with different structural, functional and evolutionary features. The unique genes that are specific either to Arabidopsis thaliana or Oryza sativa have features that are different than those of conserved unique genes. On one hand, the species-specific unique genes code preferentially for excreted peptides implied in regulatory functions. On the other hand, the conserved unique genes have characteristics described in genes implied in basal metabolism of the cells and which evolve slowly. Some potential regulatory motifs have been found over-represented only in the promoter of these genes. Lastly, after duplication, these genes generally lose one duplicate, which suggest a strong negative selection against the co-existence of two not diverged copies of the same gene

    Genomics of the semi-aquatic bugs (Heteroptera; Gerromorpha): recent advances toward establishing a model lineage for the study of phenotypic evolution

    No full text
    International audienceGerromorpha, also known as semi-aquatic bugs, present the 7 striking capability to walk on water surface, which has long 8 attracted the interest of many scientists. Yet our understanding 9 of the mechanisms associated with their adaptation and 10 diversification within this new habitat remain largely unknown. 11 In this review we discuss how new transcriptomic and genomic 12 resources have contributed to establish the Gerromorpha as an 13 important lineage to study phenotypic evolution. In particular 14 we outline the impact of recent comparative transcriptomic 15 analyses and first published genomes to advance our 16 understanding of genomic basis of adaptations to water 17 surface locomotion Q3 and sexual dimorphism

    The growth factor BMP11 is required for the development and evolution of a male exaggerated weapon and its associated fighting behavior in a water strider

    No full text
    International audienceExaggerated sexually selected traits, often carried by males, are characterized by the evolution of hyperallometry, resulting in their disproportionate growth relative to the rest of the body among individuals of the same population. While the evolution of allometry has attracted much attention for centuries, our understanding of the developmental genetic mechanisms underlying its emergence remains fragmented. Here we conduct comparative transcriptomics of the legs followed by an RNA interference (RNAi) screen to identify genes that play a role in the hyperallometric growth of the third legs in the males of the water strider Microvelia longipes . We demonstrate that a broadly expressed growth factor, Bone Morphogenetic Protein 11 (BMP11, also known as Growth Differentiation Factor 11), regulates leg allometries through increasing the allometric slope and mean body size in males. In contrast, BMP11 RNAi reduced mean body size but did not affect slope either in the females of M . longipes or in the males and females of other closely related Microvelia species. Furthermore, our data show that a tissue-specific factor, Ultrabithorax (Ubx), increases intercept without affecting mean body size. This indicates a genetic correlation between mean body size and variation in allometric slope, but not intercept. Strikingly, males treated with BMP11 RNAi exhibited a severe reduction in fighting frequency compared to both controls and Ubx RNAi-treated males. Therefore, male body size, the exaggerated weapon, and the intense fighting behavior associated with it are genetically correlated in M . longipes . Our results support a possible role of pleiotropy in the evolution of allometric slope
    corecore