75 research outputs found

    Small area variations and factors associated with blood pressure and body-mass index in adult women in Accra, Ghana: Bayesian spatial analysis of a representative population survey and census data

    Get PDF
    Background Body-mass index (BMI) and blood pressure (BP) levels are rising in sub-Saharan African cities, particularly among women. However, there is very limited information on how much they vary within cities, which could inform targeted and equitable health policies. Our study aimed to analyse spatial variations in BMI and BP for adult women at the small area level in the city of Accra, Ghana. Methods and findings We combined a representative survey of adult women’s health in Accra, Ghana (2008 to 2009) with a 10% random sample of the national census (2010). We applied a hierarchical model with a spatial term to estimate the associations of BMI and systolic blood pressure (SBP) and diastolic blood pressure (DBP) with demographic, socioeconomic, behavioural, and environmental factors. We then used the model to estimate BMI and BP for all women in the census in Accra and calculated mean BMI, SBP, and DBP for each enumeration area (EA). BMI and/or BP were positively associated with age, ethnicity (Ga), being currently married, and religion (Muslim) as their 95% credible intervals (95% CrIs) did not include zero, while BP was also negatively associated with literacy and physical activity. BMI and BP had opposite associations with socioeconomic status (SES) and alcohol consumption. In 2010, 26% of women aged 18 and older had obesity (BMI ≥ 30 kg/m2), and 21% had uncontrolled hypertension (SBP ≥ 140 and/or DBP ≥ 90 mm Hg). The differences in mean BMI and BP between EAs at the 10th and 90th percentiles were 2.7 kg/m2 (BMI) and in BP 7.9 mm Hg (SBP) and 4.8 mm Hg (DBP). BMI was generally higher in the more affluent eastern parts of Accra, and BP was higher in the western part of the city. A limitation of our study was that the 2010 census dataset used for predicting small area variations is potentially outdated; the results should be updated when the next census data are available, to the contemporary population, and changes over time should be evaluated. Conclusions We observed that variation of BMI and BP across neighbourhoods within Accra was almost as large as variation across countries among women globally. Localised measures are needed to address this unequal public health challenge in Accra

    Chemical Characterization and Source Apportionment of Household Fine Particulate Matter in Rural, Peri-urban, and Urban West Africa

    Get PDF
    Household air pollution in sub-Saharan Africa and other developing regions is an important cause of disease burden. Little is known about the chemical composition and sources of household air pollution in sub-Saharan Africa, and how they differ between rural and urban homes. We analyzed the chemical composition and sources of fine particles (PM2.5) in household cooking areas of multiple neighborhoods in Accra, Ghana, and in peri-urban (Banjul) and rural (Basse) areas in The Gambia. In Accra, biomass burning accounted for 39–62% of total PM2.5 mass in the cooking area in different neighborhoods; the absolute contributions were 10–45 μg/m3. Road dust and vehicle emissions comprised 12–33% of PM2.5 mass. Solid waste burning was also a significant contributor to household PM2.5 in a low-income neighborhood but not for those living in better-off areas. In Banjul and Basse, biomass burning was the single dominant source of cooking-area PM2.5, accounting for 74–87% of its total mass; the relative and absolute contributions of biomass smoke to PM2.5 mass were larger in households that used firewood than in those using charcoal, reaching as high as 463 μg/m3 in Basse homes that used firewood for cooking. Our findings demonstrate the need for policies that enhance access to cleaner fuels in both rural and urban areas, and for controlling traffic emissions in cities in sub-Saharan Africa

    Deep Transfer Learning on Satellite Imagery Improves Air Quality Estimates in Developing Nations

    Get PDF
    Urban air pollution is a public health challenge in low- and middle-income countries (LMICs). However, LMICs lack adequate air quality (AQ) monitoring infrastructure. A persistent challenge has been our inability to estimate AQ accurately in LMIC cities, which hinders emergency preparedness and risk mitigation. Deep learning-based models that map satellite imagery to AQ can be built for high-income countries (HICs) with adequate ground data. Here we demonstrate that a scalable approach that adapts deep transfer learning on satellite imagery for AQ can extract meaningful estimates and insights in LMIC cities based on spatiotemporal patterns learned in HIC cities. The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns learned from two US cities, specifically Los Angeles and New York

    Characterisation of urban environment and activity across space and time using street images and deep learning in Accra

    Get PDF
    The urban environment influences human health, safety and wellbeing. Cities in Africa are growing faster than other regions but have limited data to guide urban planning and policies. Our aim was to use smart sensing and analytics to characterise the spatial patterns and temporal dynamics of features of the urban environment relevant for health, liveability, safety and sustainability. We collected a novel dataset of 2.1 million time-lapsed day and night images at 145 representative locations throughout the Metropolis of Accra, Ghana. We manually labelled a subset of 1,250 images for 20 contextually relevant objects and used transfer learning with data augmentation to retrain a convolutional neural network to detect them in the remaining images. We identified 23.5 million instances of these objects including 9.66 million instances of persons (41% of all objects), followed by cars (4.19 million, 18%), umbrellas (3.00 million, 13%), and informally operated minibuses known as tro tros (2.94 million, 13%). People, large vehicles and market-related objects were most common in the commercial core and densely populated informal neighbourhoods, while refuse and animals were most observed in the peripheries. The daily variability of objects was smallest in densely populated settlements and largest in the commercial centre. Our novel data and methodology shows that smart sensing and analytics can inform planning and policy decisions for making cities more liveable, equitable, sustainable and healthy

    Characterisation of urban environment and activity across space and time using street images and deep learning in Accra

    Get PDF
    The urban environment influences human health, safety and wellbeing. Cities in Africa are growing faster than other regions but have limited data to guide urban planning and policies. Our aim was to use smart sensing and analytics to characterise the spatial patterns and temporal dynamics of features of the urban environment relevant for health, liveability, safety and sustainability. We collected a novel dataset of 2.1 million time-lapsed day and night images at 145 representative locations throughout the Metropolis of Accra, Ghana. We manually labelled a subset of 1,250 images for 20 contextually relevant objects and used transfer learning with data augmentation to retrain a convolutional neural network to detect them in the remaining images. We identified 23.5 million instances of these objects including 9.66 million instances of persons (41% of all objects), followed by cars (4.19 million, 18%), umbrellas (3.00 million, 13%), and informally operated minibuses known as tro tros (2.94 million, 13%). People, large vehicles and market-related objects were most common in the commercial core and densely populated informal neighbourhoods, while refuse and animals were most observed in the peripheries. The daily variability of objects was smallest in densely populated settlements and largest in the commercial centre. Our novel data and methodology shows that smart sensing and analytics can inform planning and policy decisions for making cities more liveable, equitable, sustainable and healthy

    Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning

    Get PDF
    Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks

    High-resolution spatiotemporal measurement of air and environmental noise pollution in sub-Saharan African cities: Pathways to Equitable Health Cities Study protocol for Accra, Ghana

    Get PDF
    Introduction: Air and noise pollution are emerging environmental health hazards in African cities, with potentially complex spatial and temporal patterns. Limited local data is a barrier to the formulation and evaluation of policies to reduce air and noise pollution. Methods and analysis: We designed a year-long measurement campaign to characterize air and noise pollution and their sources at high-resolution within the Greater Accra Metropolitan Area, Ghana. Our design utilizes a combination of fixed (year-long, n = 10) and rotating (week-long, n = ~130) sites, selected to represent a range of land uses and source influences (e.g. background, road-traffic, commercial, industrial, and residential areas, and various neighbourhood socioeconomic classes). We will collect data on fine particulate matter (PM2.5), nitrogen oxides (NOx), weather variables, sound (noise level and audio) along with street-level time-lapse images. We deploy low-cost, low-power, lightweight monitoring devices that are robust, socially unobtrusive, and able to function in the Sub-Saharan African (SSA) climate. We will use state-of-the-art methods, including spatial statistics, deep/machine learning, and processed-based emissions modelling, to capture highly resolved temporal and spatial variations in pollution levels across Accra and to identify their potential sources. This protocol can serve as a prototype for other SSA cities. Ethics and dissemination: This environmental study was deemed exempt from full ethics review at Imperial College London and the University of Massachusetts Amherst; it was approved by the University of Ghana Ethics Committee. This protocol is designed to be implementable in SSA cities to map environmental pollution to inform urban planning decisions to reduce health harming exposures to air and noise pollution. It will be disseminated through local stakeholder engagement (public and private sectors), peer-reviewed publications, contribution to policy documents, media, and conference presentations

    Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning

    Get PDF
    Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks

    Subjective Well-being in Rural India: The Curse of Conspicuous Consumption

    Get PDF
    Using data on 697 individuals from 375 rural low income households in India, we test expectations on the effects of relative income and conspicuous consumption on subjective well-being. The results of the multi-level regression analyses show that individuals who spent more on conspicuous consumption report lower levels of subjective well-being. Surprisingly an individual’s relative income position does not affect feelings of well-being. Motivated by positional concerns, people do not passively accept their relative rank but instead consume conspicuous goods to keep up with the Joneses. Conspicuous consumption always comes at the account of the consumption of basic needs. Our analyses point at a positional treadmill effect of the consumption of status goods

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified
    corecore