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Urban air pollution is a public health challenge in low- and middle-income

countries (LMICs). However, LMICs lack adequate air quality (AQ) mon-

itoring infrastructure. A persistent challenge has been our inability to esti-

mate AQ accurately in LMIC cities, which hinders emergency preparedness

and risk mitigation. Deep learning-based models that map satellite imagery

to AQ can be built for high-income countries (HICs) with adequate ground

data. Here we demonstrate that a scalable approach that adapts deep transfer

learning on satellite imagery for AQ can extract meaningful estimates and in-

sights in LMIC cities based on spatiotemporal patterns learned in HIC cities.

The approach is demonstrated for Accra in Ghana, Africa, with AQ patterns
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learned from two US cities, specifically Los Angeles and New York.

One Sentence Summary

Estimating air quality in low-resourced developing cities with limited observations is feasible

with deep transfer learning.

Introduction

Accurately estimating urban air quality (AQ) is vital for effective policy and research. However,

not all parts of the world are equally equipped with an adequate ground monitoring network (see

figure 1). Cities in low- and middle-income countries (LMICs), such as in sub-Saharan Africa

and South-East Asia, severely lack the infrastructure required to monitor AQ (1). For instance,

of the approximately 15,000 AQ stations reporting to the World Air Quality Index (WAQI)

Project , less than 300 stations are located in Africa. Only 7 out of 54 countries in Africa have

real-time AQ monitoring stations (2). In contrast, satellite imagery at increasingly high reso-

lution (HR) is now available globally from governmental and commercial resources. There is,

thus, an emerging argument that satellite imagery combined with the latest advances in machine

learning (ML) methods - particularly computer vision - may offer a promising alternative ap-

proach when traditional methods prove inadequate (3–5). Computer vision is a subfield of ML

that enables computers to derive meaningful information from digital images and other visual

inputs.

Traditional methods for developing city-wide AQ maps can be categorized into physical

and empirical approaches. Physical models, such as CMAQ (6), can provide detailed insights

into the physical-chemical processes of the diffusion and transformation of multiple pollutants

and present the direct linkage between pollutant emission and air pollution. However, these

chemical transport models are coarse-grained (4-12 km spatial resolution) and dependent on a
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priori knowledge with regard to emissions, which may not be available. Moreover, the underly-

ing physics driving the emissions may not be known understood. On the other hand, empirical

models demonstrate the relationships between dependent and multiple independent variables

based on historical data. One of the most widely used regression methods in environmental

health studies is land-use regression (LUR) modeling (7, 8). LUR models solve multiple re-

gression equations that map sample locations and different environmental variables. It requires

gathering locally measured data on traffic, weather, land use, and population density, among

others. The resulting models can predict AQ levels at unmeasured locations with a high spatial

resolution (∼ 100 m). However, data collection for LUR models is time-consuming and may

even be prohibitive if requisite data is unavailable. Thus, LUR models are available for only a

handful of urban regions and developed on an annual basis.

Although satellite-based data-products (e.g., Aerosol Optical Depth) have been used to cal-

culate AQ indicators in the past (9, 10), in this work, we posit a different approach to inferring

air quality from satellite data. We hypothesize that with the availability of sub-meter resolu-

tion satellite imagery, next-generation data-driven AQ models might infer pollution informa-

tion directly from the images using computer vision techniques. The visual features in HR

satellite imagery (e.g., parks, roads, industries) indicative of air quality can be distinguished

and learned. For example, a satellite image containing a dense road network may indicate a

high concentration of air pollutants such as NO2; an image comprising a green cover may sug-

gest the opposite. The latest advances in ML, especially Deep Learning (DL) (11, 12), make

such a task particularly amenable. Convolutional neural networks (CNN) can learn to identify

such features from large training data and have shown promising results in this regard (13, 14).

Within remote sensing, too, DL methods have been applied to problems such as land use and

land cover classification (15), predicting economic indicators from nightlight imagery (16), and

crop estimation (17).
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DeepAQ Model - Unsupervised Transfer Learning

Although DL models, which are data-intensive by design, perform well on regions and problems

where large training data is available, generalization to newer, often data-poor areas remains

challenging (18). It limits the direct application of ML/DL techniques to satellite imagery

over regions - usually high-income and developed - with abundant ground-level data for model

training and validation. We overcome this challenge using a transfer learning approach (19).

In ML, transfer learning is the idea that knowledge gained while solving one problem can be

applied to a different but related problem. Depending on how much (labeled) training data is

available over the actual area of interest, transfer methods can be divided into supervised or

unsupervised (see Supplementary Material for more details).

In this work, we propose an unsupervised transfer learning approach (DeepAQ hereafter)

and demonstrate it for the city of Accra in Ghana, Africa. The DeepAQ model performs two

steps: first, a CNN-based model is trained to estimate air quality at 200 m resolution (in terms

of annual average NO2 levels) over cities with sufficient training data. Los Angeles and New

York City (NYC) are chosen as two candidate cities. The two cities are chosen because of

1) availability of labeled data, and, more importantly, 2) a wide distribution of NO2 levels

and associated patterns. In the second step, the DeepAQ model is transferred to Accra in a

completely unsupervised setting (see Methodology). Our team collected AQ data in Accra for

model validation across 130 stations for a year (20). As an initial proof-of-concept, we also

demonstrate the performance of our DeepAQ model by transferring a trained model from LA

to NYC, where sufficient labeled data is available for both cities for model validation.

Satellite Imagery: Over 300 raw satellite images from MAXAR WorldView2 (WV2) are

used in this study to train and validate the DeepAQ model. WV2 was launched in 2009 as

part of the MAXAR satellite constellation. It is a sun-synchronous satellite located 770 km
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from Earth. Images are produced in eight spectral bands in the VIS–NIR range (400 nm–1040

319 nm) with a spatial resolution of 2 m (rescaled to ∼ 2.5 m to better match the target data

resolution). A single raw image roughly spans an area of 400 km2. In this work, only the

visible (RGB) bands are used. From each image, multiple 80 x 80 patches are extracted, such

that each patch covers a 200 m x 200 m region on the region to match the target data resolution.

In total, approx. 40,000, 16,000, 28,000 image patches are generated for LA, NYC and Accra

respectively based on the availability of satellite imagery.

Target Data: The mean annual NO2 target data (µg/m3) at 200 m resolution is available

from (2010) LUR models for LA and NYC (21). LUR models solve multiple regression equa-

tions that map sample locations and various environmental variables. It requires gathering lo-

cally measured data on traffic, weather, land use, and population density, among others. LUR

data is only available for select few cities as LUR models require substantial time and effort.

They commonly serve as inputs for environmental policy and research as it is not possible to

obtain station data at such high resolution.

For Accra, a team of researchers associated with this work collected NO2 ground level data

across 135 different locations for a year (20). Although in DeepAQ, no labeled data from Accra

is used, the 135 datapoints collected serve to validate the predictions over Accra.

Road Network: Locations near (major) roads have higher NO2 levels because of the strong

correlation with vehicular emission. Based on this understanding, the distance of each target

data point from a major road is calculated and fed as an input to the DeepAQ model. The road

network information for the three cities is obtained from OpenStreetMap, which is a provider

of freely available global geographic database.

Data Pre-Processing: Raw satellite data need to be processed before use. In this work,

radiometric correction, followed by filtering for cloud cover was performed on the satellite im-

ages. Finally, the images were normalized between the range of (−1, 1) before patch extraction.
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The problem is formulated as a regression task. The goal is to predict the mean annual NO2

level (µg/m3) over an urban region given the corresponding satellite imagery. At each time,

the DeepAQ model takes as input two image patches - one from the source city (labeled) and

another from the target city (unlabeled). During training, the model learns to generate domain-

invariant features for the target city image patches (see section 2.3 for details) while learning to

predict NO2 levels for the source city. At the inference, the trained model is used to predict the

NO2 levels over the target city using the domain-invariant feature embeddings learned.

We perform two experiments. The first proof-of-concept demonstrates the utility of the

DeepAQ model by considering only LA and NYC as the source and target cities, respectively.

The goal is to the validate how the model performs by evaluating against the large labeled data

available for NYC (not used during training). Once the model efficacy is established, the ac-

tual analysis is performing using both LA and NYC as (labeled) source cities and Accra as the

(unlabeled) target city. A standard ResNet-34 (22) based convolutional neural network (CNN)

is used as a baseline with no domain adaptation. Two metrics are used to evaluate to perfor-

mances - standard deviation normalized root mean squared error (σ − rmse) and coefficient of

determination (R2).

Results

The main results are presented in figures 2 and 3. In terms of point metrics, the DeepAQ

model substantially outperforms the baseline CNN (Table 1). In the case of NYC, we observe

the baseline model fails to capture the spatial distribution of NO2 values, especially over the

Manhattan region with high NO2 levels (figure 2). The DeepAQ models not only captures

the regions of high NO2 values much better, but is also able to localize distinct regions near

roads. However, DeepAQ, too, misses out on areas with extremely highNO2 values. A possible

explanation is that such high values (≥ 100 µg/m3) are not observed in LA and the model is
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City NYC Accra
Method σ − nrmse R2 σ − nrmse R2

DeepAQ 0.525 0.642 0.665 0.492
Baseline 0.844 0.243 0.981 0.275

Table 1: Results. DeepAQ compares favorably to the baseline model which is a simple CNN
(resnet-34) without domain adaptation. σ− rmse refers to root mean squared error normalized
by the standard deviation σ.

bounded by the maximum observed value. The DeepAQ model achieves a substantially lower

σ−nrmse (38%) and roughly 3 times higherR2 score compared to the baseline (supplementary

figure S4). It shows the DeepAQ model is able to successfully transfer features from the source

city to the target city. We further analyze this aspect during model interpretation.

For Accra, the baseline CNN trained on LA and NYC (without transfer learning) resulted

in an R2 score of 0.0. In other words, it fails to capture any distribution over the region. In

comparison, DeepAQ results in an R2 score of 0.49 and the predicted distribution overlaps with

the actual distribution except for regions of extremely high NO2 values (supplementary figures

S5 and S6).

To summarize, the DeepAQ model succeeds in making reasonably well prediction over

unseen regions. However, extremely high and low values are not predicted well. It may be

possible to overcome this limitation by using a diverse set of source cities with different AQ

distributions. In that case, the model may learn to associate a broader range of values with the

urban features identified.

Model Interpretation

The goal of the DeepAQ model is to learn high-level features that are indicative of the NO2

levels, for example, roads, freeways, parks. To interpret the model output, we use a pixel

attribution method called Grad-CAM (23). The method outputs a relevance score for the input
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image pixels that maximally contributed to the DeepAQ output against the input image. We

select two sets of images corresponding to high and low levels of NO2 and generate the pixel-

level saliency maps using Grad-CAM for each image (figure 4). We observe that the model is

able to identify semantically meaningful features such as freeways in case of high NO2, i.e.,

the ’freeway’ pixels contribute more to the DeepAQ output. Similarly in areas of low NO2, the

model is able to identify green areas such as forests and parks. The ability to learn semantically

meaningful, and potentially generalizable, features is critical for domain adaptation.

Conclusion

Traditional methods for high-resolution AQ mapping are built manually using locally available

data. It is difficult to scale them beyond the regions they are built for. Low- and middle-income

countries (LMIC) that include some of the most polluted cities lack the resources for direct AQ

monitoring. Increasingly fine satellite imagery combined with deep learning methods offer a

scalable, automated approach to AQ monitoring making them particularly appealing for LMICs

lacking ground data. This work proposes a new approach that entails developing data-driven

AQ models using sub-meter satellite imagery that can be transferred to LMIC cities using pat-

terns and insights learned from data-rich cities in the developed parts of the world. Such high-

resolution AQ models / maps can facilitate informed decision-making in environmental health

policy and research at local scale in the fastest growing urban regions (in LMICs). However,

we must not lose sight of the importance of installing high-quality AQ sensors in LMIC cities

as the validity of input-output relationship in deep learning models is critically dependent on

accurate and reliable estimates of the pollutants of interest.

References

1. R. V. Martin, et al., Atmospheric Environment: X 3, 100040 (2019).

8



2. S. suffocation in Africa: Air pollution is a growing menace, UNICEF (2019).

3. X. X. Zhu, et al., IEEE Geoscience and Remote Sensing Magazine 5, 8 (2017).

4. Q. Yuan, et al., Remote Sensing of Environment 241, 111716 (2020).

5. E. Rolf, et al., Nature communications 12, 1 (2021).

6. O. US EPA, CMAQ: The Community Multiscale Air Quality Modeling System (2016).

7. M. Lee, et al., Science of the Total Environment 592, 306 (2017).

8. L. Jin, et al., Environmental research 177, 108597 (2019).

9. A. Van Donkelaar, R. V. Martin, R. J. Park, Journal of Geophysical Research: Atmospheres

111 (2006).

10. A. C. Just, et al., Environmental science & technology 49, 8576 (2015).

11. Y. Guo, et al., Neurocomputing 187, 27 (2016).

12. Y. LeCun, Y. Bengio, G. Hinton, nature 521, 436 (2015).

13. J. Gu, et al., Pattern Recognition 77, 354 (2018).

14. W. H. L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Machine learning (Elsevier, 2020),

pp. 173–191.

15. C. Zhang, et al., Remote sensing of environment 221, 173 (2019).

16. N. Jean, et al., Science 353, 790 (2016).

17. A. Koirala, K. B. Walsh, Z. Wang, C. McCarthy, Computers and electronics in agriculture

162, 219 (2019).

9



18. B. Neyshabur, S. Bhojanapalli, D. Mcallester, N. Srebro, Advances in Neural Information

Processing Systems, I. Guyon, et al., eds. (Curran Associates, Inc., 2017), vol. 30.

19. F. Zhuang, et al., Proceedings of the IEEE 109, 43 (2020).

20. S. N. Clark, et al., BMJ open 10, e035798 (2020).

21. M. J. Bechle, D. B. Millet, J. D. Marshall, Environmental science & technology 49, 12297

(2015).

22. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. corr

abs/1512.03385 (2015) (2015).

23. R. R. Selvaraju, et al., Proceedings of the IEEE International Conference on Computer

Vision (ICCV) (2017).

24. S. J. Pan, Q. Yang, IEEE Transactions on knowledge and data engineering 22, 1345 (2010).

25. Y. Ganin, V. Lempitsky, International conference on machine learning (PMLR, 2015), pp.

1180–1189.

Acknowledgments

This work was supported by the Pathways to Equitable Healthy Cities grant from the Wellcome

Trust [209376/Z/17/Z], NASA ARC ARIA Award, USRA IRAD Award, NSF CRISP 2.0 Type

2 INQUIRE Award (1735505) and the NSF INTERN Award. We thank the Pathways to Equi-

table Healthy Cities team and Wellcome Trust, NASA, USRA, and NSF for the financial and

professional support, the NEX group at NASA ARC for supporting our work, Prof. Michael

Jerrett (UCLA) for the data and Dr. Jason Su (UC Berkeley) who helped develop the land use

regression model in LA, as well as Maxar for providing access to their satellite imagery.

10



Author Contributions

Conceptualization: NY, MSH, MVP, AAA, AS, ARG

Methodology: NY, MSH, MVP, AAA

Investigation: NY, MSH, MVP, AAA

Visualization: NY, VL, ES

Funding acquisition: NY, MSH, NO, ARG

Supervision: MSH, NO, ARG

Data Acquisition: MSH, RA, MB, ME

Writing – original draft: NY, MSH, ARG

Writing – review and editing: NY, MSH, MVP, AAA, AS, ES, RA, VL, MB, ME, NO, ARG

11



Fig. 1. Skewed distribution of air quality (AQ) monitoring stations across the globe. The figure
show 681 cities reporting AQ data to the World Air Quality Index (WAQI) Project through pub-
lic, private and citizen efforts. Out of approximately 15,000 stations, less than 300 are located in
Africa. The third most polluted city in Africa - Accra, Ghana - has only one monitoring station
contributing to WAQI compared to 20+ stations for New York City, as an example.
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Fig. 2. Mean annualNO2 levels (µg/m3) over New York City (NYC) as estimated by DeepAQ,
and compared with the baseline Resnet-34 model (trained only on Los Angeles (LA) data with
no transfer learning). In this case, LA acts as the source city (domain). Compared to the
baseline, the DeepAQ model is able to better identify regions of high NO2 levels, such as in
the Manhattan area of NYC (upper left). The road network is superimposed on top (red lines)
for reference. See supplementary figure S3 for the case when no road network information is
provided to the model.
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Fig. 3. Mean annual NO2 levels (µg/m3) over Accra, Ghana, as predicted by DeepAQ.The
square dots point to the fixed monitoring stations measuring NO2 levels across Accra. The
DeepAQ model is able to capture the spatial distribution of NO2 over Accra with higher levels
observed in the city center and near the highways. See supplementary figure S2 for the case
when no road network information is provided to the model.
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Fig. 4. Interpreting the DeepAQ model. Using the Grad-CAM method, regions of the input that
are considered important by the model for prediction are visualized. The top row in (A) and (B)
contains four satellite image patches from Los Angeles with high and low NO2 levels (µg/m3),
respectively. The bottom row contains the pixel-importance maps generated using Grad-CAM.
Pixels in yellow refer to the pixels that maximally contributed to the DeepAQ output against
that image patch. The DeepAQ models is able to learn meaningful high-level features such as
freeways and green cover and relate them to different levels of NO2.
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Supplementary Materials

Methodology

Transfer Learning

We define transfer learning using the framework in (24). A domain D = {X ,P(X} consists

of a feature space X and a marginal probability distribution P(X ). Given a domain, a task

T = {Y , f(·)} consists of a label space Y and a predictive function f(·) which models P(y|x)

for y ∈ Y and x ∈ X . Given a source domain DS and learning task TS , and a target domain

DT and learning task TT , transfer learning aims to improve the learning of the target predictive

function fT (·) in TT using the knowledge from DS and TS .

Domain Adaptation

Based on whether DS 6= DT , TS 6= TT or both, transfer learning can be categorized into differ-

ent sub-types. A comprehensive overview of transfer learning approaches is presented in (24).

A common use case arises from the phenomenon known as dataset shift or domain shift, where

the marginal probability distribution of the feature spaceX in source domain PS(X ) is different

from the target domain, PT (X ). As a result, the models trained on the feature representations

from one domain do not generalize well on novel (target) datasets (domains). The typical solu-

tion is to use a pre-trained model and fine-tune using task-specific datasets. However, it might

be prohibitively difficult to obtain enough labeled data to properly fine-tune the large number

of parameters employed by DL models. Unsupervised Domain adaptation (UDA) is the prob-

lem for overcoming such a domain shift and facilitate improved generalization of DL models to

novel ’unlabeled’ datasets. The more successful UDA methods attempt to learn feature repre-

sentations that are domain-invariant. In other words, the DA model maps the source and target

features into a common feature space to ensure that the model cannot distinguish between the
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training and test domain data samples. By doing so, the model is expected to perform (general-

ize) better on feature embeddings, and ultimate the downstream task, of the target domain.

Proposed Model

The proposed UDA model (DeepAQ) is based on an adversarial training approach, first pro-

posed by Ganin et al (25). The model (see Fig. S1) comprises of three components – a con-

volutional feature encoder (G), a fully connected classifier or regression decoder (D) and an

auxiliary domain classifier (critic, C). In the first step, the encoder takes the labeled source and

unlabeled target domain images as inputs and generates feature embeddings. The critic C then

takes the feature embeddings generated by G and attempts to classify them as coming either

from source or target-domain. The encoder G is then trained with an additional adversarial loss

(with gradient reversal) that maximizes C’s mistakes and thus aligns features across domains.

Further, during training only the labeled source images are fed through to the decoder D which

predict the mean annual NO2 level over that satellite image patch using a Euclidean loss. At

inference, the domain-invariant features for the target domain learned by the feature encoder G

are passed through decoder D for prediction the mean annual NO2 levels for the target domain

image patches. We adapt the original approach in Ganin et al. by adding a strong regulariza-

tion in the encoder (G), which substantially improved the performance (over 10% for synthetic

datasets such as MNIST). Empirically, we observed that the regularization allows for learning

more robust and potentially more generalizable features that are equally discriminative at the

same time.

Baseline

In DeepAQ, a pre-trained ResNet-34 model is used as the feature encoder component (G). For

the baseline model, the critic (C) responsible for transferring or adapting the features across
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domains is not considered. Simply put, all components except C, remain the same in the base-

line model. The baseline, thus, evaluates the model performance in the absence of domain

adaptation.

Fig. S1. Schematic Architecture for DeepAQ - Unsupervised Domain Adaptation. The three
main components include: a ResNet-34 feature encoder; an auxiliary domain classifier and a
fully-connected decoder.
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Fig. S2. Mean annual NO2 levels (µg/m3) over Accra, Ghana, as predicted by DeepAQ. In
this case, no road network information is provided to the model. The DeepAQ model is still
able to capture the spatial distribution of NO2 levels compared to the case where road network
information is explicitly provided to the model.
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Fig. S3. Mean annual NO2 levels (µg/m3) over New York City (NYC) as predicted by
DeepAQ, and compared with the baseline Resnet-34 model (no domain adaptation). In this
case, no road network information is provided to the model. The DeepAQ model is able to
better identify regions of high NO2 levels, such as in the Manhattan area of NYC (upper left);
however, the performance is poorer compared to the case where road network information is
provided explicitly. A possible explanation could be that NO2 levels are highly correlated with
proximity to roads in a large city like NYC where vehicular emission might be the predominant
source of NO2.
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Fig. S4. DeepAQ Predicted vs Target mean annual NO2 (µg/m3) distribution over New York
City.
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Fig. S5. DeepAQ Predicted vs Target mean annual NO2 (µg/m3) distribution over Accra,
Ghana.
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Fig. S6. DeepAQ Predicted vs Targeted mean annual NO2 (µg/m3) distribution over Accra,
Ghana when no road network information is provided to the DeepAQ model. For direct com-
parison, see figure S5.
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