315 research outputs found

    N-cadherin: stabilizing synapses

    Get PDF
    Spines are sites of excitatory synapse formation in central neurons. Alterations in spine structure and function are widely believed to actively contribute to the cellular mechanisms of learning and memory. In this issue, Mendez et al. (2010. J. Cell Biol. doi:10.1083/jcb.201003007) demonstrate a pivotal role for the cell adhesion molecule N-cadherin in activity-mediated spine stabilization, offering a new mechanism for how spine dynamics and stability are regulated by activity in central neurons

    Age‐related changes in cerebellar and hypothalamic function accompany non‐microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    Get PDF
    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits

    Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology

    Get PDF
    Mutations in the postsynaptic scaffolding gene SHANK2 have recently been identified in individuals with autism spectrum disorder (ASD) and intellectual disability. However, the cellular and physiological consequences of these mutations in neurons remain unknown. We have analyzed the functional impact caused by two inherited and one de novo SHANK2 mutations from ASD individuals (L1008_P1009dup, T1127M, R462X). Although all three variants affect spine volume and have smaller SHANK2 cluster sizes, T1127M additionally fails to rescue spine volume in Shank2 knock-down neurons. R462X is not able to rescue spine volume and dendritic branching and lacks postsynaptic clustering, indicating the most severe dysfunction. To demonstrate that R462X when expressed in mouse can be linked to physiological effects, we analyzed synaptic transmission and behavior. Principal neurons of mice expressing rAAV-transduced SHANK2-R462X present a specific, long-lasting reduction in miniature postsynaptic AMPA receptor currents. This dominant negative effect translates into dose-dependent altered cognitive behavior of SHANK2-R462X-expressing mice, with an impact on the penetrance of ASD

    The Potential Involvement of E-cadherin and β-catenins in Meningioma

    Get PDF
    To investigate the potential involvements of E-cadherin and β-catenin in meningioma.Immunohistochemistry staining was performed on samples from patients with meningioma. The results were graded according to the positive ratio and intensity of tissue immunoreactivity. The expression of E-cadherin and β-catenin in meningioma was analyzed by its relationship with WHO2007 grading, invasion, peritumoral edema and postoperative recurrence.The positive rates of E-cadherin in meningioma WHO I, II, III were 92.69%, 33.33% and 0, respectively, (P<0.05); while the positive rates of β-catenin in meningioma WHO I, II, III were 82.93%, 33.33% and 20.00%, respectively, (P<0.05). The positive rate of E-cadherin in meningioma without invasion (94.12%) was higher than that with invasion (46.67%) (P<0.05). The difference in the positive rate of β-catenin between meningioma without invasion (88.24%) and meningioma with invasion (33.33%, P<0.05) was also statically significant. The positive rates of E-cadherin in meningioma with peritumoral edema 0, 1, 2, 3 were 93.75%, 85.71%, 60.00% and 0 respectively, (P<0.05); the positive rates of β-catenin in meningioma with peritumoral edema 0, 1, 2, 3 were 87.50%, 85.71%, 30.00% and 0 respectively, (P<0.01). The positive rates of E- cadherin in meningioma with postoperative recurrence were 33.33%, and the positive rate with postoperative non-recurrence was 90.00% (P<0.01). The positive rates of β-catenin in meningioma with postoperative recurrence and non-recurrence were 11.11%, 85.00%, respectively (P<0.01).The expression levels of E- cadherin and β-catenin correlated closely to the WHO 2007 grading criteria for meningioma. In atypical or malignant meningioma, the expression levels of E-cadherin and β-catenin were significantly lower. The expression levels of E- cadherin and β-catenin were also closely correlated with the invasion status of meningioma, the size of the peritumoral edema and the recurrent probabilities of the meningioma, all in an inverse correlationship. Taken together, the present study provided novel molecular targets in clinical treatments to meningioma

    Synapses on demand require dendrites at the ready: How defining stages of dendritic development in vitro could inform studies of behaviorally driven information storage in the brain

    Full text link
    Bill Greenough's work provides a framework for thinking about synaptogenesis not only as a key step in the initial wiring of neural systems according to a species typical plan (i.e., experience‐expectant development), but also as a mechanism for storing information based an individual's unique experience over its lifetime (i.e., experience‐dependent plasticity). Analysis of synaptic development in vitro brings a new opportunity to test the limits of expectant‐expectant development at the level of the individual neuron. We analyzed dendritic growth, synapse formation, and the development of specialized cytoplasmic microdomains during development in cultured hippocampal neurons, to determine if the timing of each of these events is correlated. Taken together, the findings reported here support the hypotheses that (1) dendritic development is rate limiting in synapse formation and (2) synaptic circuits are assembled in a step‐wise fashion consistent with a stage‐specific shift from genomically pre‐programmed to activity‐dependent mechanisms. © 2011 Wiley Periodicals, Inc. Dev Psychobiol 53:443–455, 2011.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86892/1/20560_ftp.pd

    Neurotrophin-3 Is Involved in the Formation of Apical Dendritic Bundles in Cortical Layer 2 of the Rat

    Get PDF
    Apical dendritic bundles from pyramidal neurons are a prominent feature of cortical neuropil but with significant area specializations. Here, we investigate mechanisms of bundle formation, focusing on layer (L) 2 bundles in rat granular retrosplenial cortex (GRS), a limbic area implicated in spatial memory. By using microarrays, we first searched for genes highly and specifically expressed in GRS L2 at postnatal day (P) 3 versus GRS L2 at P12 (respectively, before and after bundle formation), versus GRS L5 (at P3), and versus L2 in barrel field cortex (BF) (at P3). Several genes, including neurotrophin-3 (NT-3), were identified as transiently and specifically expressed in GRS L2. Three of these were cloned and confirmed by in situ hybridization. To test that NT-3–mediated events are causally involved in bundle formation, we used in utero electroporation to overexpress NT-3 in other cortical areas. This produced prominent bundles of dendrites originating from L2 neurons in BF, where L2 bundles are normally absent. Intracellular biocytin fills, after physiological recording in vitro, revealed increased dendritic branching in L1 of BF. The controlled ectopic induction of dendritic bundles identifies a new role for NT-3 and a new in vivo model for investigating dendritic bundles and their formation

    Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype

    Get PDF
    Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc

    The evolutionary history of the catenin gene family during metazoan evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catenin is a gene family composed of three subfamilies; p120, beta and alpha. Beta and p120 are homologous subfamilies based on sequence and structural comparisons, and are members of the armadillo repeat protein superfamily. Alpha does not appear to be homologous to either beta or p120 based on the lack of sequence and structural similarity, and the alpha subfamily belongs to the vinculin superfamily. Catenins link the transmembrane protein cadherin to the cytoskeleton and thus function in cell-cell adhesion. To date, only the beta subfamily has been evolutionarily analyzed and experimentally studied for its functions in signaling pathways, development and human diseases such as cancer. We present a detailed evolutionary study of the whole catenin family to provide a better understanding of how this family has evolved in metazoans, and by extension, the evolution of cell-cell adhesion.</p> <p>Results</p> <p>All three catenin subfamilies have been detected in metazoans used in the present study by searching public databases and applying species-specific BLAST searches. Two monophyletic clades are formed between beta and p120 subfamilies using Bayesian phylogenetic inference. Phylogenetic analyses also reveal an array of duplication events throughout metazoan history. Furthermore, numerous annotation issues for the catenin family have been detected by our computational analyses.</p> <p>Conclusions</p> <p>Delta2/ARVCF catenin in the p120 subfamily, beta catenin in the beta subfamily, and alpha2 catenin in the alpha subfamily are present in all metazoans analyzed. This implies that the last common ancestor of metazoans had these three catenin subfamilies. However, not all members within each subfamily were detected in all metazoan species. Each subfamily has undergone duplications at different levels (species-specific, subphylum-specific or phylum-specific) and to different extents (in the case of the number of homologs). Extensive annotation problems have been resolved in each of the three catenin subfamilies. This resolution provides a more coherent description of catenin evolution.</p

    Synapse Pathology in Psychiatric and Neurologic Disease

    Get PDF
    Inhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical signals. In recent years, it has become evident that spine morphology is intimately linked to synapse function—smaller spines have smaller synapses and support reduced synaptic transmission. The relationship between synaptic signaling, spine shape, and brain function is never more apparent than when the brain becomes dysfunctional. Many psychiatric and neurologic disorders, ranging from mental retardation and autism to Alzheimer’s disease and addiction, are accompanied by alterations in spine morphology and synapse number. In this review, we highlight the structure and molecular organization of synapses and discuss functional effects of synapse pathology in brain disease
    corecore