12 research outputs found

    Identification of two distinct structural regions in a human porcine endogenous retrovirus receptor, HuPAR2, contributing to function for viral entry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Of the three subclasses of Porcine Endogenous Retrovirus (PERV), PERV-A is able to infect human cells via one of two receptors, HuPAR1 or HuPAR2. Characterizing the structure-function relationships of the two HuPAR receptors in PERV-A binding and entry is important in understanding receptor-mediated gammaretroviral entry and contributes to evaluating the risk of zoonosis in xenotransplantation.</p> <p>Results</p> <p>Chimeras of the non-permissive murine PAR and the permissive HuPAR2, which scanned the entire molecule, revealed that the first 135 amino acids of HuPAR2 are critical for PERV-A entry. Within this critical region, eighteen single residue differences exist. Site-directed mutagenesis used to map single residues confirmed the previously identified L109 as a binding and infectivity determinant. In addition, we identified seven residues contributing to the efficiency of PERV-A entry without affecting envelope binding, located in multiple predicted structural motifs (intracellular, extracellular and transmembrane). We also show that expression of HuPAR2 in a non-permissive cell line results in an average 11-fold higher infectivity titer for PERV-A compared to equal expression of HuPAR1, although PERV-A envelope binding is similar. Chimeras between HuPAR-1 and -2 revealed that the region spanning amino acids 152–285 is responsible for the increase of HuPAR2. Fine mapping of this region revealed that the increased receptor function required the full sequence rather than one or more specific residues.</p> <p>Conclusion</p> <p>HuPAR2 has two distinct structural regions. In one region, a single residue determines binding; however, in both regions, multiple residues influence receptor function for PERV-A entry.</p

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Improved Identification and Differentiation of Varicella-Zoster Virus (VZV) Wild-Type Strains and an Attenuated Varicella Vaccine Strain Using a VZV Open Reading Frame 62-Based PCR

    No full text
    A new method was developed to identify and differentiate varicella-zoster virus (VZV) wild-type strains from the attenuated varicella Oka vaccine strain. The PCR technique was used to amplify a VZV open reading frame (ORF) 62 region. A single specific amplicon of 268 bp was obtained from 71 VZV clinical isolates and several laboratory strains. Subsequent digestion of the VZV ORF 62 amplicons with SmaI enabled accurate strain differentiation (three SmaI sites were present in amplicons of vaccine strain VZV, compared with two enzyme cleavage sites for all other VZV strains tested). This method accurately differentiated the Oka vaccine strain from wild-type VZV strains circulating in countries representing all six populated continents. Moreover, the assay more reliably distinguished wild-type Japanese strains from the vaccine strain than did previously described methods

    In vivo targeting of lentiviral vectors pseudotyped with the Tupaia paramyxovirus H glycoprotein bearing a cell-specific ligand

    No full text
    Despite their exceptional capacity for transgene delivery ex vivo, lentiviral (LV) vectors have been slow to demonstrate clinical utility in the context of in vivo applications. Unresolved safety concerns related to broad LV vector tropism have limited LV vectors to ex vivo applications. Here, we report on a novel LV vector-pseudotyping strategy involving envelope glycoproteins of Tupaia paramyxovirus (TPMV) engineered to specifically target human cell-surface receptors. LV vectors pseudotyped with the TPMV hemagglutinin (H) protein bearing the interleukin (IL)-13 ligand in concert with the TPMV fusion (F) protein allowed efficient transduction of cells expressing the human IL-13 receptor alpha 2 (IL-13Rα2). Immunodeficient mice bearing orthotopically implanted human IL-13Rα2 expressing NCI-H1299 non-small cell lung cancer cells were injected intravenously with a single dose of LV vector pseudotyped with the TPMV H-IL-13 glycoprotein. Vector biodistribution was monitored using bioluminescence imaging of firefly luciferase transgene expression, revealing specific transduction of tumor tissue. A quantitative droplet digital PCR (ddPCR) analysis of lung tissue samples revealed a >15-fold increase in the tumor transduction in mice treated with LV vectors displaying IL-13 relative to those without IL-13. Our results show that TPMV envelope glycoproteins can be equipped with ligands to develop targeted LV vectors for in vivo applications
    corecore