56 research outputs found

    Differences in Activities of Antioxidant Superoxide Dismutase, Glutathione Peroxidase and Prooxidant Xanthine Oxidoreductase/Xanthine Oxidase in the Normal Corneal Epithelium of Various Mammals

    Get PDF
    Summary Under normal conditions, antioxidants at the corneal surface are balanced with the production of reactive oxygen species without any toxic effects. Danger from oxidative stress appears when natural antioxidants are overwhelmed leading to antioxidant/prooxidant imbalance. The aim of the present study was to examine the activities of enzymes contributing to the antioxidant/prooxidant balance in normal corneal epithelium of various mammals. The enzyme activities of antioxidant superoxide dismutase and glutathione peroxidase, as well as prooxidant xanthine oxidoreductase/xanthine oxidase were examined using biochemical methods. Results show that superoxide dismutase activity is high in rabbits and guinea pigs, whereas in pigs the activity is low and in cows it is nearly absent. In contrast, glutathione peroxidase activity is high in cows, pigs and rabbits, whereas in guinea pigs the activity is low. As far as prooxidant enzymes are concerned, elevated xanthine oxidoreductase/xanthine oxidase activities were found in rabbits, lower activities in guinea pigs, very low activity in cows and no activity in pigs. In conclusion, the above results demonstrate inter-species variations in activities of enzymes participating in antioxidant/prooxidant balance in the corneal epithelium. It is suggested that the levels of antioxidant and prooxidant enzymes studied in the corneal epithelium might be associated with the diurnal or nocturnal activity of animals. UV rays decompose hydrogen peroxide to damaging hydroxyl radicals and perhaps for this reason large animals with diurnal activity (cow, pig) require more effective peroxide removal (high glutathione peroxidase activity) together with the suppression of peroxide production (low superoxide dismutase activity, low xanthine oxidoreductase activity)

    Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies

    Get PDF
    Inherited forms of arrhythmogenic and dilated cardiomyopathy (ACM and DCM) are characterized by variable disease expression and age-related penetrance. Calcium (Ca2+^{2+}) is crucially important for proper cardiac function, and dysregulation of Ca2+^{2+} homeostasis seems to underly cardiomyopathy etiology. A polymorphism, c.286T>G p.(Ser96Ala), in the gene encoding the histidine-rich Ca2+^{2+} binding (HRC) protein, relevant for sarcoplasmic reticulum Ca2+^{2+} cycling, has previously been associated with a marked increased risk of life-threatening arrhythmias among idiopathic DCM patients. Following this finding, we investigated whether p.(Ser96Ala) affects major cardiac disease manifestations in carriers of the phospholamban (PLN) c.40_42delAGA; p.(Arg14del) pathogenic variant (cohort 1); patients diagnosed with, or predisposed to, ACM (cohort 2); and DCM patients (cohort 3). We found that the allele frequency of the p.(Ser96Ala) polymorphism was similar across the general European-American population (control cohort, 40.3-42.2%) and the different cardiomyopathy cohorts (cohorts 1-3, 40.9-43.9%). Furthermore, the p.(Ser96Ala) polymorphism was not associated with life-threatening arrhythmias or heart failure-related events across various patient cohorts. We therefore conclude that there is a lack of evidence supporting the important role of the HRC p.(Ser96Ala) polymorphism as a modifier in cardiomyopathy, refuting previous findings. Further research is required to identify bona fide genomic predictors for the stratification of cardiomyopathy patients and their risk for life-threatening outcomes

    A Systematic Analysis of the Clinical Outcome Associated with Multiple Reclassified Desmosomal Gene Variants in Arrhythmogenic Right Ventricular Cardiomyopathy Patients

    Get PDF
    The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. Graphical Abstract

    A call for public archives for biological image data

    Get PDF
    Public data archives are the backbone of modern biological and biomedical research. While archives for biological molecules and structures are well-established, resources for imaging data do not yet cover the full range of spatial and temporal scales or application domains used by the scientific community. In the last few years, the technical barriers to building such resources have been solved and the first examples of scientific outputs from public image data resources, often through linkage to existing molecular resources, have been published. Using the successes of existing biomolecular resources as a guide, we present the rationale and principles for the construction of image data archives and databases that will be the foundation of the next revolution in biological and biomedical informatics and discovery.Comment: 13 pages, 1 figur

    Progress report no. 1

    Get PDF
    Statement of responsibility on title-page reads: Editors: I.A. Forbes, M.J. Driscoll, D.D. Lanning, I. Kaplan, N.C. Rasmussen; Contributors: S.A. Ali, S.T. Brewer, D.K. Choi, F.M. Clikeman, W.R. Corcoran, M.J. Driscoll, I.A. Forbes, C.W. Forsberg, S.L. Ho, C.S. Kang, I. Kaplan, J.L. Klucar, D.D. Lanning, T.C. Leung, E.L. McFarland P.G. Mertens, N.R. Ortiz, A. Pant, N.A. Passman, N.C. Rasmussen, M.K. Sheaffer, D.A. Shupe, G.E. Sullivan, A.T. Supple, J.W. Synan, C.P. Tzanos, W.J. Westlake"MIT-4105-3."Includes bibliographical referencesProgress report; June 30, 1970U.S. Atomic Energy Commission contracts: AT(30-1)410

    Goat and buffalo milk fat globule membranes exhibit better effects at inducing apoptosis and reduction the viability of HT-29 cells

    Get PDF
    Bovine milk fat globule membrane (MFGM) has shown many health benefits, however, there has not been much study on non-cattle MFGMs. The purpose of this study was to compare the anti-proliferation effects and investigate the mechanisms of MFGMs from bovine, goat, buffalo, yak and camel milk in HT-29 cells. Results showed that protein content in MFGM of yak milk is the highest among five MFGM. All MFGMs inhibited cellular proliferation which was in agreement with cell morphology and apoptosis. However, the number of cells in S-phase from 24 h to 72 h was increased significantly by treatment with goat, buffalo and bovine MFGMs (100 ÎĽg/mL), but not yak and camel. All MFGMs treatment significantly reduced the mitochondrial membrane potential (with an order of goat>buffalo>bovine>camel>yak) and Bcl-2 expression, but increased the expression of both Bax and Caspase-3. Taken together, the results indicate that all MFGMs, especially goat and buffalo MFGMs, showed better effects at inducing apoptosis and inhibition of the proliferation of HT-29 cells. The mechanism might be arresting the cell cycle at S phase, depolarization of mitochondrial membrane potential, down-regulation of Bcl-2 expression and increase of Bax and Caspase-3 expression

    Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies

    Get PDF
    Inherited forms of arrhythmogenic and dilated cardiomyopathy (ACM and DCM) are characterized by variable disease expression and age-related penetrance. Calcium (Ca 2+) is crucially important for proper cardiac function, and dysregulation of Ca 2+ homeostasis seems to underly cardiomyopathy etiology. A polymorphism, c.286T>G p.(Ser96Ala), in the gene encoding the histidine-rich Ca 2+ binding (HRC) protein, relevant for sarcoplasmic reticulum Ca 2+ cycling, has previously been associated with a marked increased risk of life-threatening arrhythmias among idiopathic DCM patients. Following this finding, we investigated whether p.(Ser96Ala) affects major cardiac disease manifestations in carriers of the phospholamban ( PLN) c.40_42delAGA; p.(Arg14del) pathogenic variant (cohort 1); patients diagnosed with, or predisposed to, ACM (cohort 2); and DCM patients (cohort 3). We found that the allele frequency of the p.(Ser96Ala) polymorphism was similar across the general European-American population (control cohort, 40.3-42.2%) and the different cardiomyopathy cohorts (cohorts 1-3, 40.9-43.9%). Furthermore, the p.(Ser96Ala) polymorphism was not associated with life-threatening arrhythmias or heart failure-related events across various patient cohorts. We therefore conclude that there is a lack of evidence supporting the important role of the HRC p.(Ser96Ala) polymorphism as a modifier in cardiomyopathy, refuting previous findings. Further research is required to identify bona fide genomic predictors for the stratification of cardiomyopathy patients and their risk for life-threatening outcomes

    Implantable cardioverter defibrillator use in arrhythmogenic right ventricular cardiomyopathy in North America and Europe

    Get PDF
    Background and aims: Implantable cardioverter-defibrillators (ICDs) are critical for preventing sudden cardiac death (SCD) in arrhythmogenic right ventricular cardiomyopathy (ARVC). This study aims to identify cross-continental differences in utilization of primary prevention ICDs and survival free from sustained ventricular arrhythmia (VA) in ARVC. Methods: This was a retrospective analysis of ARVC patients without prior VA enrolled in clinical registries from 11 countries throughout Europe and North America. Patients were classified according to whether they received treatment in North America or Europe and were further stratified by baseline predicted VA risk into low- (25%/5 years) groups. Differences in ICD implantation and survival free from sustained VA events (including appropriate ICD therapy) were assessed. Results: One thousand ninety-eight patients were followed for a median of 5.1 years; 554 (50.5%) received a primary prevention ICD, and 286 (26.0%) experienced a first VA event. After adjusting for baseline risk factors, North Americans were more than three times as likely to receive ICDs {hazard ratio (HR) 3.1 [95% confidence interval (CI) 2.5, 3.8]} but had only mildly increased risk for incident sustained VA [HR 1.4 (95% CI 1.1, 1.8)]. North Americans without ICDs were at higher risk for incident sustained VA [HR 2.1 (95% CI 1.3, 3.4)] than Europeans. Conclusions: North American ARVC patients were substantially more likely than Europeans to receive primary prevention ICDs across all arrhythmic risk strata. A lower rate of ICD implantation in Europe was not associated with a higher rate of VA events in those without ICDs

    Outcome of the First wwPDB Hybrid / Integrative Methods Task Force Workshop

    Get PDF
    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models
    • …
    corecore