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ABSTRACT

This is the first annual report in an experimental
program for the investigation of the neutronics of bench-
mark mock-ups of LMFBR blankets.

During the period covered by the report, July 1, 1969
through June 30, 1970, work was devoted primarily to comple-
tion and proof-testing of the experimental facilities at
the M.I.T. Reactor and to the acquisition of experimental
techniques, data reduction, and analysis capabilities
necessary to achieve the objectives of the program. Experi-
ments were initiated on a steel reflected blanket constructed
of uranium metal fuel clad in carbon steel tubes and surrounded
by Na2 CrO;. Measurements were made that confirmed the
achievement of the proper transverse spectral and spatial
neutron distribution over a large central region of the
test assembly.

Work is described on the development of foil and
instrumental methods for neutron spectrometry, and on the
application of capture-gamma techniques to blanket analysis,
Improved methods for simplified LMFBR calculations are
described and a discussion of the economic and techrical
bases for the future program effort is presented.
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1. INTRODUCTION

1.1 Foreword

This is the first annual report of the LMFBR Blanket Physics

Project. The report covers work done primarily in the period from

July 1, 1969, through June 30, 1970.

The importance of the breeding ratio has long been recognized.

However, the primary emphasis of fast reactor physics experiments

and analysis for LMFBR development has justifiably been on the core

design. The work on blanket neutronics now in progress at M. L T.

has been initiated as an important supplement to the core analysis

work in progress at AEC facilities as well as other U. S. industrial

organizations. The information to be derived by the Blanket Physics

Project will give experimental information together with comparisons

to currently available theoretical computations.

Construction of the M. I. T. Blanket Test Facility was begun in

July, 1968, funded by an M. I. T. research grant. In July, 1969,
support under USAEC Contract AT (30-1) 4105 commenced.

Construction was completed in September, 1969.

From October through December, 1969, a detailed evaluation of

the performance of the facility was made using the first simulated

blanket assembly. B.T.F. Blanket No. 1 was composed approximately

of 50 v/o iron and 50 v/o anhydrous borax (Na 2 B 4 O 7 ). The con-
struction of the facility and the evaluation program are described in

detail in the topical report:

I. A. Forbes, M. J. Driscoll, T. J. Thompson, I. Kaplan
and D. D. Lanning, "Design, Construction and Evaluation
of a Facility for the Simulation of Fast Reactor Blankets,"
MIT-4105-2, MITNE-110 (February, 1970).

Construction of the second blanket assembly was completed early

in March, 1970. Blanket No. 2 is an accurate mockup of a typical

LMFBR blanket. A program of foil activation measurements to

establish that transverse spectral equilibrium exists in Blanket No. 2,
and to measure the transverse buckling of the assembly was carried
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out between March and June, 1970.

To assist the reader concerning the description of the blanket

assembly, the terminology used throughout this report is as follows

(refer to Fig. 4.1). The laterally horizontal x-direction and the

vertical y-direction are called the transverse directions, and the

z-direction is referred to as the axial direction. The axial direction

is equivalent to the radial direction in the LMFBR being simulated.

After the successful completion of the transverse activation

traverses, measurements of the activation of various materials in

the axial direction in Blanket No. 2 were begun, and are now under-

way.

Work is also in progress on the measurement of neutron spectra

in Blanket No. 2 using both direct spectrometer measurements (He 3

and proton recoil spectrometers) and foil activation unfolding

methods (foil packet irradiation combined with the GAMANL and

SAND-II codes). Prompt gamma spectroscopy on Blanket No. 2 is

being carried out with a view to providing an overall blanket neutron

balance. In-rod activation measurements with U 2 3 8 foils are being

made to determine the extent of heterogeneity effects.

Theoretical investigations over the past year have included work

on blanket -reflector interactions, blanket economic studies, hetero-

geneity effects, a simplified one-group model applicable to LMFBR

physics analysis, and spectrum unravelling techniques. Work has

also begun on a detailed blanket optimization analysis.

1.2 Purpose and Scope of Research

The purpose of the LMFBR Blanket Physics Project is to conduct

both experimental and theoretical investigations of the breeding

blanket region of the LMFBR. The systematic study of a series of

realistic mockups of typical blanket configurations and compositions

will provide data required in the development of an economical

breeder reactor.

Work on B. T. F. Blanket No. 2 (described in Chapter 3) began in

March, 1970, and will continue through December, 1970. Measure-

ments scheduled for Blanket No. 2 include:
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(a) Material activation traverses: U238 fission and capture, Pu 2 3 9

and U235 fission; Fe, Ni, Cr and Na capture to the extent

proven feasible.

(b) Transverse and axial buckling measurements using Au, Mo and

In foils.

(c) He3 and proton recoil measurements of neutron spectra in

selected locations.

(d) Foil packet measurements of the neutron energy spectrum as a

function of axial position.

(e) Prompt gamma measurements to provide an independent method

for obtaining a neutron balance.

(f) In-rod activation of annular U238 foils to determine the extent of

heterogeneity effects.

Data analysis and methods will be as follows:

(a) Axial spectral characterization and activation rates will be

calculated for comparison with all foil activation measurements.

These calculations will be made with the 1DX, ANISN and XSDRN

codes using various cross section sets.

(b) Two-dimensional burnup calculations will be made using the

2DB code.

(c) Neutron spectra will be derived from foil activation data using

the SAND-II code.

(d) Gamma spectra will be interpreted with the aid of the GAMANL

code developed at M. I. T.

(e) Neutron spectra will be derived from proton recoil data with

codes developed by Bennett et al. at ANL. These will be

obtained and put into operation in the near future.

In addition, work will be continued on the development of methods

for the analysis of heterogeneity effects and the determination of

neutron spectra from foil activation data. No major code development
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work is contemplated. Other LMFBR contractors will be contacted

where appropriate to solicit help in carrying out one-of-a-kind

supplementary analyses. Contact will be established with various

industrial groups to provide continuity between the blanket research

group and design developments.

1.3 Staff

The project staff, including thesis students, during the report

period was as follows:

M. J. Driscoll, Associate Professor of Nuclear Engineering,

Project Leader

I. Kaplan, Professor of Nuclear Engineering

D. D. Lanning, Professor of Nuclear Engineering

N. C. Rasmussen, Professor of Nuclear Engineering

T. J. Thompson, Professor of Nuclear Engineering

(on leave of absence)

F. M. Clikeman, Associate Professor of Nuclear Engineering

I. A. Forbes, Research Associate (to September 1970)

A. T. Supple, Jr., Engineering Assistant

G. Sullivan, Technician

S. Ahmed Ali, Research Assistant (to September 1969)

S. T. Brewer, Research Assistant (as of September 1969),

Ph. D. student

D. K. Choi, Research Assistant (to September 1969)

W. R. Corcoran, NDEA Trainee, Ph. D. student

J. N. Donohew, Research Assistant (to September 1969)

C. Forsberg, AEC Fellow, S. M. student (as of June 1970)

S. L. Ho, L L E., S. M. student (to February 1970)

C. S. Kang, Research Assistant (as of February 1970),

Sc. D. student

Continuing on staff as of July, 1970.

tSalary not paid from contract funds during FY 1970.
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fJ. L. Klucar, Special Project student (to September 1969)

T. C. Leung, Research Assistant, Sc. D. student

E. L. McFarland, Research Assistant (from September 1969

to June 1970)

P. Mockapetris, S. B. student (as of February 1970)

N. R. Ortiz, G. E. Fellow, Sc. D. student

A. Pant, Research Assistant (as of February 1970),
S. M. student

N. A. Passman, Research Assistant (as of February 1970),

S. M. student

M. K. Sheaffer, U. S. Army, Ph. D. student

tD. Shupe, S. M. student, M. I. T. Physics Department

J. W. Synan, Special Project student (to September 1969)

C. Tzanos, Ph. D. student (as of June 1970)

W. J. Westlake, A. E. C. Fellow, S. M. student (to June 1970)

Continuing on staff as of July 1970.

tSalary not paid from contract funds during FY 1970.
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2. DESCRIPTION OF THE FACILITY

I. A. Forbes

2.1 Introduction

A detailed description of the Blanket Test Facility and of the

initial evaluation tests using Blanket Assembly No. 1 is given in

Reference (1). A brief description follows.

2.2 The Facility

The heart of the Blanket Test Facility is a uranium-loaded

converter plate. Powered by the thermal neutron flux from the MITR

thermal column, the converter generates the fast neutron flux for

testing a mockup of an LMFBR blanket. The highly-thermalized flux

provided by the thermal column (cadmium ratio for gold = 1700) helps

ensure that the converter plate has the leakage spectrum and albedo

characteristic of the core of a large LMFBR.

The Blanket Test Facility (B. T. F.) is located at the rear of the

graphite-lined cavity, or "hohlraum," of the MITR; Figures 2.1 and

2.2 show cross-section and plan views, respectively, of the facility.

The B. T. F. irradiation region was formed by removing the rear

graphite wall of the hohlraum and existing thermal exponential facility

shielding, and installing a five-sided aluminum box to line the

resulting cavity. The interior volume of this cavity is about 6 ft. by

6 ft. by 6 ft. The aluminum liner box is seam-welded to maintain the

sealed nature of the hohlraum and prevent the leakage of A from the

hohlraum into the irradiation region and the reactor building. Boral

sheet is attached to the top, sides and floor of the box to reduce back-

scattering of thermalized neutrons from the surrounding concrete

shielding.

Shielding for the irradiation region is provided by four heavy

concrete shield blocks, two stationary and two portable. The two

portable blocks weigh approximately 15 tons each and can be removed
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with the reactor building's overhead crane to provide access to the

irradiation region.

A set of rails,extending from the front of the irradiation region

out to the reactor building containment wall, permits the insertion of

the cart-mounted experimental assemblies into the irradiation region.

For operation of the Blanket Test Facility, the converter

assembly is rolled to the front of the irradiation region, the simulated

blanket assembly is installed directly behind it, and the concrete

shield doors replaced. For operation of the thermal exponential

facility and other experiments utilizing the hohlraum thermal flux,

the converter assembly is replaced by a third cart, loaded with

graphite and having the same dimensions as the converter assembly.

The graphite cart restores the reflective properties of the hohlraum

for thermal neutrons.

Changeovers from fast operation to thermal operation and vice

versa are performed only when the MIT Reactor is shut down. How-

ever, personnel dose rates are low enough to permit access to the

B. T. F. irradiation region when the reactor is at full power (5 Mw),

for the retrieval of experimental packages (foils, etc.) from the

blanket assembly.

2.3 The Converter Assembly

A schematic view of the converter assembly is shown in Fig. 2.3.

The converter assembly consists of a graphite external moderator

region composed of 4 in, by 4 in. reactor grade graphite stringers,

and a fuel region composed of 1/2-in.-diameter, aluminum-clad UO 2
fuel rods in a close-packed, triangular-pitch array. The active fuel

region is 48 in. high and 60 in. wide, and has U235 enrichments of

1.0999% and 1.99%. The graphite stringers and fuel rods are mounted

vertically, between upper and lower grid plates, in a closed aluminum

container. The container is designed to prevent any accidental

rearrangement of fuel that might approach a critical assembly even if

the facility were flooded with H2 0 it will also contain any A4 1 gener-

ated in the converter,

In the present loading, the graphite external. moderator region is
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8 in. thick and the UO 2 fuel region is 6.865 in. thick. However, both

the graphite and fuel loadings may be readily changed (provision is

made for up to 12 in. of graphite and 7.755 in. of fuel) to permit the

generation of a wide range of converter leakage spectra.

2.4 Initial Evaluation Tests

When construction of the Blanket Test Facility was completed, a

series of experimental runs was made to evaluate the performance of

the facility with the converter assembly and the first blanket

assembly.

Blanket No. 1 consisted of sixty-three subassemblies loaded on

an experimental cart to form a blanket 55.4 in. high, 60.75 in. wide

and 30.5 in. thick. The subassemblies were loaded with a mixture of

low-carbon steel punchings and anhydrous borax powder to provide a

composition of approximately 50 v/o iron and 50 v/o Na 2 B 4 0 7 This

mixture contains oxygen, sodium and iron (typical blanket constitueits),

and simulates the neutronic properties of uranium with iron and boron

so that the neutron spectra and overall spatial flux shapes generated

are quite similar to those in realistic blanket assemblies.

The evaluation tests included:

(a) Dose measurements to check the biological shielding, accessi-

bility following irradiation, and the residual activation of the

converter and blanket assemblies.

(b) Measurements with bare and cadmium-covered gold foils on the

sides, top and bottom of the blanket assembly to determine the

extent of neutron streaming around the blanket and of back-

scattering of thermalized neutrons from the surrounding concrete

shielding.

(c) Mapping of the converter leakage flux shape with a matrix of gold

foils.

(d) Transverse activation traverses with gold and indium foils to

ensure that transverse spectral equilibrium was attained in a

large central volume of the blanket, and to measure the trans-

verse buckling.
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(e) Axial activation traverses with gold and indium foils for compari-

son with ANISN calculations to check for correct converter

spectrum generation.

The evaluation program was successfully completed by the end

of December, 1969.

2.5 References

(1) Forbes, I. A., M. J. Driscoll, T. J. Thompson, I. Kaplan
and D. D. Lanning, "Design, Construction and Evaluation
of a Facility for the Simulation of Fast Reactor Blankets,"
MIT-4105-2, MITNE-110 (February, 1970).
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3. BLANKET ASSEMBLY NO. 2

S. T. Brewer, I. A. Forbes, J. L. Klucar and T. Leung

3.1 Introduction

B. T. F. Blanket No. 2 is an accurate mockup of a typical LMFBR

blanket composition. Subassembly boxes of low-carbon steel rectangu-

lar mechanical steel tubing are loaded with 121 uranium metal fuel rods

arranged on a square lattice spacing of 0.511 in.; the 0.25-in.-diameter

uranium metal fuel is clad in low-carbon steel tubing. The inter-rod

volume in each subassembly is filled with anhydrous sodium chromate

(Na 2 CrO4 ) powder. The subassembly boxes are loaded on an experi-

mental cart to provide a blanket assembly which is 48 in. high, 59.2 in.

wide and 17.72 in. thick. The blanket is backed by an 18-in.-thick low-

carbon steel reflector.

The as-loaded atom densities for Blanket No. 2 are given in

Table 3.2.

3.2 Description of Blanket No. 2 (J. L. Klucar and T. Leung)

3.2.1 General Description

Figure 3.1 shows a schematic view of Blanket Assembly No. 2.

A 58-1/4 in. by 62-7/16 in. piece of 1-in.-thick mild steel plate welded

between two 60 in. by 39 in. pieces of 1-in.-thick mild steel plate forms

an "H" frame support structure which is mounted on an experimental

cart. The front section of the "H" frame contains three rows of the

blanket subassemblies, and the rear section is filled with seventeen

58-1/4 in. by 60 in, pieces of 1-in.-thick mild steel plate to act as a

neutron reflector. Twenty-five of the subassemblies contain steel-clad

uranium metal fuel rods and anhydrous sodium chromate powder. The

outer subassemblies (see Fig. 3.1) are filled with the mixture of iron

punchings and anhydrous borax (Na 2 B 4 O 7 ) powder used for Blanket

Assembly No. 1 (see Section 2.4).
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FIG. 3.1 SCHEMATIC VIEW OF BLANKET ASSEMBLY NO. 2
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Twenty-six tubes are provided for foil activation traverses in the

axial and transverse directions through the blanket (see Fig. 3.2).

The 58-in.-long mild steel tubes have a 7/16 in. 0. D. and a 0.028 in.

wall thickness. A 1-in.-diameter hole, 4 in. below mid-plane, has

been drilled through the reflector to provide a beam hole for fast

neutron and prompt gamma spectrum measurements. In addition, a

foil holder rod may be inserted in this hole for foil activation

traverses through the reflector region.

3.2.2 Description of the Subassemblies

Figure 3.3 shows a schematic view of a typical subassembly.

The low-carbon steel subassembly boxes are 5.92 in. square, 60 in.

high and have a wall thickness of approximately 3/32 in. The bottom

of each subassembly is sealed with a seam-welded steel plate. Each

subassembly contains 121 fuel rods arranged in an eleven by eleven

square lattice with a pitch of 0.511 in. Sixty of the rods have a U 2 3 5

enrichment of 1.016%, and sixty-one have a U235 enrichment of

1.143%; the two enrichments are loaded in a checkerboard pattern

within the subassembly box.

The fuel rods are held in place by upper and lower aluminum grid

plates. The lower grid plate rests on the bottom closure plate, and

the upper grid plate is supported on four 48-in.-long tubes which have

an 0. D. of 7/16 in. and a wall thickness of 0.028 in. These tubes fit

over four fuel rods located near the corners of the lattice. The fuel

rods are loaded through the upper grid down into the lower grid plate.

The upper grid plate has cut-out sections for the traversing tubes

(see Fig. 3.3) and for loading the sodium chromate powder; each tube

normally contains a fuel rod unless a foil traverse is to be made.

A total of 3025 fuel rods have been fabricated at M. I. T. by

recladding 48-in.-long by 0.250-in. -diameter uranium metal rods in

low-carbon steel tubing. The clad tubing is 50 in. long, and has a

5/16-in. 0. D. and an 0.018-in. waH thickness. Each end of the tube is

closed by a press-fitted steel plug, 1/2 in. long and 9/32 in. in

diameter.



"H"

FRAME

TRAVERSING
- TUBE

FIG. 3.2 PLAN VIEW OF BLANKET ASSEMBLY SHOWING
THE TRAVERSING TUBE POSITIONS

N\)ON



27

LIFTING
HOLE

TRAVERSING
TUBE

EPOXI
SEAL

Na 2 Cr 04

UPPER
GRID PLATE 501N. 601N.

FUEL ROD
(48 IN. ACTIVE

LENGTH)

LOWER GRID
PLATE

SEAM-WELDE[
BOTTOM PLATE

FIG. 3.3 SCHEMATIC CROSS
NO.2 SUBASSEMBL

SECTION
Y

VIEW OF BLANKET



28

The inter-rod volume of the subassemblies (see Fig. 3.4) is filled

with anhydrous sodium chromate powder (technical grade) which has

been dried and ground (see Section 3.3). The average loading of sodium

chromate in a subassembly is 31.106 kg, with a standard deviation of

± 0.294 kg; the loadings vary from 30.51 kg to 31.80 kg, or ± 2% maxi-

mum deviation from the mean.

The top of each subassembly is sealed by a 0.035-in.-thick steel

plate which is epoxied in place to ensure that the subassembly is air-

and water-tight; the traversing tubes penetrate this plate.

A breakdown of the subassembly weight is given in-Table 3.1.

TABLE 3.1

Subassembly Component Weights

Uranium metal 89.30 kg

Na2 CrO 31.11 kg

Cladding 13.00 kg

Subassembly box 26.55 kg

Grid plate support tubes 0.91 kg

Grid plates 0.36 kg

Total 161.23 kg

3.2.3 Atom Densities

The atom densities for Blanket No. 2 were calculated by

homogenizing the material components of a subassembly at mid-

height - viz. the uranium metal fuel, the anhydrous sodium chromate

and the low-carbon steel cladding, support tubes and subassembly

walls. The carbon content of the steel is about 0.15 w/o; other im-

purities, such as manganese and nickel, are negligible. The water

content of the sodium chromate is 0.10 w/o.
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The homogenized atom densities in Blanket No. 2 are given in

Table 3.2 where they are compared with the atom densities in an

" equivalent realistic blanket," composed of 37.0 v/o depleted UO 2
(at 90% of theoretical density), 20.7 v/o Type 316 stainless steel

(71.2 w/o Fe, 20.0 w/o Cr and 8.8 w/o Ni), 32 v/o sodium and

10.3 v/o void. It is evident that Blanket No. 2 provides a realistic

blanket composition in all respects, with the exception of the small

hydrogen content.

TABLE 3.2

Homogenized Atom Densities in B. T. F. Blanket No. 2

Equivalent RealisticNuclide Blanket No. 2 Eu aetRa
Blanket"'

U2 3 5  0.000088 0.000016

U2 3 8  0.008108 0.008131

0 0.016293 0.016293

Na 0.008128 0.008128

Cr 0.004064 0.003728

Fe 0.013750 0.017814 0.012611 0.017814

Ni 0.000000 0..001475

H 0.000073 0.000000

C 0.000096 0.000082

Composed of 37.0 v/o depleted U0 2 (at 90%
20.7 v/o Type 316 stainless steel, 32.0 v/o
void.

of theoretical density),
sodium and 10.3 v/o

3.3 Preparation of the Sodium Chromate (S. T. Brewer and J. L. Klucar)

Early in the construction of Blanket No. 2, a series of crucible

drying experiments showed that the water content of the "anhydrous"

sodium chromate, as delivered by the supplier, had a water content

of about 0.8 w/o. Since the water content of the sodium chromate could
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have a significant effect upon the spectrum in the blanket assembly

(see Section 3.4), it was decided to reduce the water content to

4 0.1 w/o by drying.

3.3.1 Drying and Loading Sodium Chromate

Since sodium chromate has a low dehydration temperature

(about 3000 F), a simple oven drying procedure was developed. A 5-kg

sample of sodium chromate heated at 400* F for 4 hours in a domestic

electric oven was shown to be reduced in weight by about 0.75%. No

further weight reduction was observed after 2 hours additional heating.

In each drying "run," five cans, each containing about 5 kg of

sodium chromate, were baked for 8 hours. Each can of chromate was

weighed before and after baking. In addition, a sample from every tenth

can was "1 crucible-dried"; the results of the crucible drying confirmed

the gross weight reduction observed in the 5-kg batches. After baking,

the cans were sealed and stored in a dry atmosphere. Several cans

were monitored, and no water pickup was noted during the storage

period.

Since the bake-dried sodium chromate was hard and crusty, it

was impossible to load it directly into the subassemblies. To reduce

the dried chromate to a uniform fine powder again, a used commercial

coffee grinder was purchased. The chromate was ground and stored in

sealed cans. Crucible drying tests showed no significant water pickup

during the grinding operation. It was found necessary to wear respi-

rators and protective clothing when handling sodium chromate powder

because of its dermatologically irritating nature.

Finally, the dried and ground sodium chromate was loaded into

the subassemblies. The cans were weighed before and after the loading.

The chromate was mildly vibration-compacted during the loading to

ensure a uniform fill. The excellent uniformity of loading achieved by

this procedure has already been noted.

3.3.2 Hydrogen Content of the Sodium Chromate

The hydrogen content of the sodium chromate was measured

by two methods:
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(a) prompt activation analysis;

(b) crucible drying.

Method (a) consisted of comparing the intensity of the 2.223-Mev

hydrogen prompt capture gamma line of a sample of sodium

chromate against that of a standard sample containing a known

amount of hydrogen. Method (b) consisted of heating a sample of

sodium chromate to the melting point in a crucible, cooling in a

dry atmosphere, and measuring the weight loss.

The water content of the sodium chromate delivered,by the

supplier was determined to be 0.83 ± 0.04 w/o from the crucible

drying tests and 0.77 ± 0.12 w/o (water-equivalent) from the prompt

activation analysis. Samples from the dried sodium chromate

loaded into the blanket subassemblies were determined to have a

mean water content of 0.10 ± 0.02 w/o by the crucible drying

method; prompt activation analysis confirmed that the content was

0.1 w/o.

Measurements of the pH of a solution of the sodium chromate in

water confirmed that the NaOH content of the sodium chromate is

negligible. Since this is the only other hydrogen-containing impurity

in technical grade sodium chromate, and because prompt activation

analysis identifies all hydrogen regardless of chemical form, it was

concluded that the 0.10 w/o water content was a reliable figure for

the final contamination level of Blanket No. 2.

3.4 The Effect of Trace Amounts of Hydrogen on the B. T. F.

Spectrum (I. A. Forbes)

3.4.1 The Effect of Hydrogen in the Sodium Chromate

Excessive water content of the sodium chromate in Blanket

No. 2 can have a significant effect on the spectrum in the blanket,

and therefore on the foil activities measured in the axial direction in

the blanket (equivalent to the radial direction in an LMFBR).

The ANISN code was used to make 16-group, 1-D, S8 calculations
238 2388

of the U (n, y) capture rate and U (n, f) fission rate through the

blanket and steel reflector of Blanket No. 2. The U 2 3 8 capture
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(a typical capture reaction) and U238 fission (a typical threshold

reaction) rates were calculated for chromate water contents of

0.0 w/o, 0.1 w/o, 0.2 w/o and 0.5 w/o. Figure 3.5 shows, for a given

sodium chromate water content, the amount by which the U238 capture

and fission rates through Blanket No. 2 differ from the zero water

content case. It is seen that the error in the capture and fission rates

due to the hydrogen content of the chromate is reduced to about the

limit of precision in the experimental determination of the activities

only when the water content of the sodium chromate is 0.1 w/o or less.

It is likewise clear that commercial "anhydrous" chromate would be

totally unacceptable.

The curves for 0.10 w/o water content could, in fact, be used to

correct axial foil activation measurements for the hydrogen content

of Blanket No. 2.

3.4.2 The Effect of Hydrogen in the Converter Assembly Graphite

Since the contamination of graphite by H 2 0 has been cited as

a problem in fast critical assembly research(1, 2), the ANISN code was

used to evaluate the effect of the estimated 300 ppm by weight of

hydrogen in the converter assembly's graphite external moderator

region. Calculations with and without this amount of hydrogen in the

graphite showed that it had no discernible effect on the blanket

spectrum.

3.5 Conclusions

An accurate and relatively inexpensive mockup of a typical

LMFBR blanket has been provided by loading uranium metal fuel,

clad in low-carbon steel, and anhydrous sodium chromate powder into

6-in.-square low-carbon steel subassembly boxes. This blanket

assembly is closely equivalent to an LMFBR blanket containing
2

38.3 v/o depleted UO , 20.8 v/o Type 316 stainless steel, 32.0 v/o

sodium and 8.9 v/o void in all important respects. The commercially-

supplied sodium chromate was bake-dried to reduce its water content

to 0.10 w/o before loading. ANISN calculations showed that the
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errors in measured foil activities in Blanket No. 2 due

to the hydrogen content are reduced to acceptable levels

only when the water content of the sodium chromate is

reduced to 0.10 w/o.

3.6 References

(1) Levine, M.M., "Report from Atomic Energy
Establishment, Winfrith," issued by B.N.L.
(February, 1970).

(2) Palmedo, P.F., H. Ludewig and A.L. Aronson,
"Effect of Hydrogen Content of Graphite in
Fast Critical Experiments," A.N.S. Trans.,
Vol. 13, No. 1, p. 253 (June, 1970).
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4. FOIL ACTIVATION MEASUREMENTS

T. Leung

4.1 Introduction

Foil activation measurements are being made in Blanket No. 2

for the purpose of providing detailed reaction rate data through the

blanket and steel reflector.

Transverse foil activation traverses to establish that transverse

spectral equilibrium exists in Blanket No. 2, and to measure the

transverse buckling, have been completed. Activation traverses in

the axial direction through the blanket and reflector are currently

being made to determine the axial activation rates for Au, In, Mo,

U238 capture and fission, and Pu239 and U235 fission; Fe, Ni, Cr

and Na capture rates will also be measured to the extent possible.

Measurements to date have been made with gold, indium and

molybdenum foils. 16-group cross sections for the Au 197 (n, y) Au 1 9 8

and In115(n, n') In115m reactions are given in Table 4.1; they were

obtained by collapsing the 620-group activation cross sections of the

SAND-II(1 ) library over a typical LMFBR core spectrum. The

Au 97 (n, T) Au198 reaction has a sufficiently high cross section over

the entire energy range to act as a neutron detector over the whole

energy spectrum; it is also particularly sensitive to thermal or epi-

thermal contamination of the blanket spectrum. The In115(n, n') In115m

reaction has a 400-keV threshold and is a suitable detector of high

energy neutron behavior. The Mo 98(n, -y) Mo99 reaction has a very

small cross section above about 1 keV, but has a relatively large

cross section below this energy; it is a suitable indicator of the

behavior of neutrons in the upper eV range.
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TABLE 4.1

16-Group Activation Cross Sections for Gold and Indium

Activation Cross Sections, barns

Group E L Au 9 (n, 1)Au198 In115(n, nl)In115m

1 3.5 MeV 0.0215 0.341

2 1.4 " 0.0586 0.275

3 0.9 " 0.0974 0.0960

4 0.4 " 0.141 0.0161

5 100 keV 0.287 0.00032

6 17 " 0.630 0.0

7 3 " 1.59 0.0

8 0.55 " 6.02 0.0

9 100 eV 11.8 0.0

10 30 " 23.2 0.0

11 10 " 7.02 0.0

12 3 " 700 0.0

13 1 " 35.4 0.0

14 0.4 " 23.8 0.0

15 0.1 " 43.2 0.0

16 Thermal 92.3 0.0

4.2 Transverse Foil Activation Measurements

4.2.1 Experimental Procedure

The size and weight of the gold, indium and molybdenum foils are

listed in Table 4.2. The foils were taped into recessed spots milled

in 5/16-in.-diameter low-carbon steel foil holder rods. The foil



TABLE 4.2

Description of Foil Materials

Foil Half Life of

Material Reaction Diameter Thickness Weight Radioactive
Isotope

Gold Au 1 9 7(n, -y)Au 1 9 8  1/8 inch 10 mil 0.038 gm 64.8 hours

Indium In115(n, n') In115m 1/4 inch 10 mil 0.060 gm 4.5 hours

Molybdenum Mo 98(n, -)Mo99 1/8 inch 25 mil 0.057 gm 66 hours
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holders were inserted into the 3/8-in. I. D. traversing tubes in the

blanket subassemblies (see Fig. 3.2) prior to irradiation. Figure 4.1

shows a schematic view of the foil irradiation positions in the blanket

assembly. Typical irradiation time for the foils was between four and

ten hours.

Following irradiation, the foils were removed from the blanket

and counted.

The activity of the gold foils was recorded by an automatic

counting and sample-changing system, using standard techniques. A

thalium-activated sodium iodide crystal was used for counting the

412-keV principal photopeak (and also the higher energy photopeaks)

of Au98 The baseline discriminator was set at the lowest point in

the spectrum below the photopeak at about 300 keV.

The molybdenum foils were counted individually. A well-type,

thalium-activated sodium iodide crystal was used for counting the

780-keV photopeak of Mo 9 9 . A single-channel analyzer was used to

straddle the peak; the channel width was approximately 130 keV.

Detection of the In115 n'I115m reaction is complicated by the

competing In 115(n, y)In116 capture reaction. The In116 activity consists

of gamma rays with energies greater than the 335-keV gamma rays

from the In115m activity, so that there can be Compton-effect counts

from In116 activity underneath the 335-keV photopeak. The resonance

integral for the capture reaction is about 2640 barns; as a result, the

54-min half-life In 1 1 6 activity may not be negligible even a few hours

after the end of the irradiation. To minimize this effect, the counting

of the 4.5-hour half-life In115m activity was begun at least 8 hours

after the end of irradiation.

The indium foils were counted in the same counting system as the

molybdenum foils. A single-channel analyzer was used to straddle the

335-keV photopeak of In 115m; the channel width was approximately

120 keV.

After counting, the raw data were corrected for decay, background

and deadtime, and reduced to relative activity per milligram of foil at

the end of irradiation.
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4.2.2 Vertical Traverses

Vertical (Y-direction) activation traverses were made with gold,

indium and molybdenum foils at various depths into the blanket. The

vertical traverses were made 1.5 in. off the horizontal centerline

(X= -1.5 in.) (see Fig. 4.1 for the coordinate system used).

Figure 4.2 shows the vertical activation traverses for gold, and

Figure 4.3 shows the vertical activation traverses for indium and

molybdenum. The standard deviation in the foil activities is smaller

than the diameter of the experimental points in the figures. The fitted

cosine curves were obtained by the least-squares method over all the

experimental points. It is seen that all the gold, indium and molybde-

num vertical activation traverses are well approximated by the relation,

A(Y) = A(0) cos 6 '
\60/

where A is the foil activity and Y is in inches.

Figure 4.4 shows the vertical gold-to-indium, indium-to-

molybdenum and gold-to-molybdenum activation ratios at various

depths into the blanket. It is seen that the activation ratios are

constant from X = -15 in, to X = + 15 in., indicating that vertical

spectral equilibrium is reached over a central region of the blanket

about 2-1/2 ft. in height. As expected, these activation ratios are a

function of the depth (Z-direction) into the blanket. The increase in

the gold-to-indium activation ratio and the decrease in the indium-

to-molybdenum and gold-to-molybdenum activation ratios with

increasing depth into the blanket indicate the softening of the neutron

spectrum.

4.2.3 Horizontal Traverses

Horizontal (X-direction) activation traverses were made with gold,

indium and molybdenum foils at two distances into the blanket, Z = 0

(converter-blanket interface) and Z = 8.88 in. The horizontal traverses

were made 3.0 in. above and below the vertical centerline (Y = +3.0 in.

and Y = - 3.0 in.).
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Figure 4.5 shows the horizontal activation traverses for gold, and

Figure 4.6 shows the horizontal activation traverses for indium and

molybdenum. Again, the standard deviation in the foil activities is

smaller than the diameter of the experimental points, and the fitted

cosine curves were obtained by least-squares fit over all the experi-

mental data. It is seen that all the gold, indium and molybdenum

horizontal activation traverses are well approximated by the relation,

A(X) = A(0) cos ,
(74/

where A is the foil activity and X is in inches.

Figure 4.7 shows the horizontal gold-to-indium, indium-to-

molybdenum and gold-to-molybdenum activation ratios at Z = 0 and

Z = 8.8 inches. It is seen that the activation ratios are constant from

Y=-15 inches to Y=+15 inches, indicating that horizontal spectral

equilibrium is reached over a central region of the blanket about

2-1/2 feet wide.

4.3 Axial Activation Traverses

Axial (Z-direction) activation traverses are currently being made

in Blanket No. 2. The axial traverses in the blanket are made in the

same traversing tubes as were used for the horizontal and vertical

traverses. The axial traverses through the low-carbon steel reflector

are made by taping the foils into recessed spots milled in a 31/32 inch-

diameter, low-carbon steel bar; the bar is inserted into the 1 inch-

diameter hole drilled through the steel reflector (see Fig. 3.2) for

irradiation.

Figure 4.8 shows axial activation traverses for gold and indium;

the standard deviation in the foil activities is smaller than the diameter

of the experimental points. The solid lines are the results of 16-group,

1-D, S8 calculations with the ANISN code; the activation cross sections

given in Table 4.1 were used. These are preliminary results only, and

further measurements and improved multigroup calculations (using

better cross section data, especially for iron) will be made.
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Measurements of the axial activation rates for U 2 3 8 capture and

fission, and Pu239 and U235 fission will be made; also Fe, Ni, Cr

and Na capture rates to the extent possible.

4.4 Conclusions

The horizontal and vertical activation traverses with gold, indium

and molybdenum foils in Blanket No. 2 show that the horizontal and

vertical spatial distributions of the neutron flux in the blanket assembly

have the desired cosine dependence; furthermore, these cosine distri-

butions have constant width and height through the thickness of the

blanket. Hence the neutron flux in Blanket No. 2 can be described by

the relation,

4(X, Y, Z, E) = cos (E) cos # (Z, E)

and the transverse leakage from the assembly can be accounted for by

means of a simple buckling term in numerical calculations. The trans-

verse buckling is given by the relation,

2 (2 ()2)

where H and A are the effective height and width, respectively, of

the neutron flux distribution in the blanket. Numerically,

H = 60 ± 1.5 in. = 152.4 ± 3.8 cm

A = 74 ± 1.5 in. = 188.0 ± 3.8 cm

2 =- 2
and B = 0.000704 ± 0.000024 cm

Since transverse leakage from the blanket assembly accounts for only

about 16% of the total blanket neutron balance (about 9.6% vertically

and 6.4% horizontally), the ± 3.4% uncertainty in the transverse buck-

ling will contribute an uncertainty of only ± 0.54% to the blanket neutron

balance.

The experimental foil activation ratios show clearly that trans-

verse spectral equilibrium is attained in a large (approximately 2-1/2

feet square) central region of Blanket No. 2. The activation ratios

also indicate the softening of the neutron spectrum with increasing
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axial (Z-direction) depth into the blanket.

The gold and indium axial activation traverses also confirm the

expected axial spectral softening. Future work involving foil acti-

vation measurements in Blanket No. 2 will concentrate on the axial

activation traverses.

4.5 References

(1) McElroy, W.N. et al., "A Computer-Automated Iterative
Method for Neutron Flux Spectra Determination by Foil
Activation," AFWL-TR-67-41 (August, 1967).
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5. INSTRUMENTAL NEUTRON SPECTRUM MEASUREMENTS

N. R. Ortiz

5.1 Introduction

Over the past twenty years, considerable effort has been made to

develop spectrometers capable of measuring neutron energies from a

few kilovolts through a few MeV. Spectrometry in this region is

desired to provide physics data essential for the design and analysis

of fast reactors.

As part of the LMFBR Blanket Physics Project program at M.I.T.,

the fast neutron spectrum in the blanket assemblies will be measured

at selected locations in the blanket. The instrumental methods to be

used for this are:

(a) LiI crystal -- for the MeV region;

(b) He 3 spectrometer -- capable of neutron spectrum measure-

ments down to about 100 keV;

(c) proton recoil spectrometer -- capable of neutron spectrum

measurements down to the low keV region.

The work to date has been concentrated on measurements with the

He3 detector, but measurements are planned using the proton recoil

spectrometer and the LiI crystal.

5.2 Measurements with the He3 Spectrometer

5.2.1 Description of the He3 System

The He3 system consists of two silicon semiconductor detectors

in a sandwich configuration; the space between the two detectors is

filled with He3 gas. A small tank of He3 gas is provided to fill the

detector to the desired operating pressure. The absorption of a

neutron by a He 3 nucleus will result in the emission of a triton and a

proton according to the reaction,

2 He3+ 0 n - 1 H3+1H +764keV.
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If the triton and the proton are each absorbed in a semiconductor

detector (as determined by a coincidence unit), and the signals from

the two detectors are added, the total energy of the reaction is

obtained. A block diagram of the system is shown in Fig. 5.1.

The advantages of the He3 spectrometer are:

(a) the He 3(n, p) reaction cross section starts with a large value for

thermal neutrons and varies smoothly with energy, having no

known resonances;

(b) there are no excited daughter products, so that the reaction

products, the triton and the proton, contain the entire energy

of the reaction.

The disadvantages of the He3 spectrometer are:

(a) the competing effect of elastic scattering of neutrons by He 3

(b) the high Q value makes the measurement of neutron energies

below about 100 keV difficult.

5.2.2 Energy Calibration and Response Function

The energy calibration of the multichannel analyzer was made

using the thermal neutron source from port 2CH1 at the M.I.T.

reactor. In a thermal flux, a 573-keV proton and a 191-keV triton

are produced. By counting the signal from one detector only, a peak

is obtained in the channel corresponding to the proton energy of

573 keV; by summing the signals due to both the proton and the triton

in coincidence, a peak is obtained in the channel corresponding to an

energy of 764 keV. A linear relationship between channel number and

energy is then assumed to provide the energy calibration of each

channel.

A Californium-252 neutron source was used to obtain the energy

response function of the He3 system. The neutron energy spectrum

of this source was assumed to be given by the expression,(2)

N(E) = CE 1/2 exp(-E/T) ,

where E is the neutron energy, and T = 1390 keV.



FIG. 5.1 He-3 NEUTRON SPECTROMETER ELECTRONIC SYSTEM 4=
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The Cf252 spectrum was measured with the He3 detector by

hanging both the Cf252 source and the detector from the ceiling of a

large shielded room to minimize the effects of neutron back-scattering

from the walls. The effect of elastic scattering of neutrons by He 3

nuclei is decreased by the coincidence requirement between the two

detectors. The background count rate from the silicon detectors was

measured by evacuating the detector of He3 and replacing it in the

neutron flux.

Figure 5.2 shows the Cf252 fission spectrum and the corres-

ponding charged particle energy spectrum detected. The difference

between the two spectra results from the energy dependence of the He 3

absorption cross section and the efficiency of the detector. The ratio

of the theoretical spectrum to the measured spectrum gives the energy

response function of the system. Knowing the response function, any

unknown spectrum can be measured and corrected to obtain the true

neutron spectrum.

5.2.3 He3 Spectrum Measurements in the Blanket Test Facility

Preliminary runs have been made with the He3 detector in an

effort to measure the energy spectrum of the neutron beam from the

1 -in. -diameter hole drilled through the iron reflector of Blanket

Assembly No. 2 (see Fig. 3.2). The He3 detector was placed two feet

from the rear surface of the reflector; flux intensity limitations of

the detector prevented its being placed closer to the reflector. The

measured neutron spectrum and background are shown in Fig. 5.3

(no correction has been made for the response function of the detector).

According to the energy calibration, most of the neutrons are in the

energy region below 100 keV. This is a much softer spectrum than

should be characteristic of the rear of the blanket assembly. Since no

collimation was provided for the neutron beam between the back of the

reflector and the detector for these preliminary runs, it is likely that

low energy neutrons leaking out of the rear face of the iron reflector

and/or backscattering from the concrete shielding surrounding the

detector contaminated the beam spectrum.
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Future measurements with the He3 detector will incorporate two

changes in the system to improve the results:

(a) a collimator between the rear face of the iron reflector and the

detector (shown in Fig. 5.4) to minimize beam contamination;

(b) replacement of the sum amplifier (adder) with a difference ampli-

fier to improve the low-energy resolution of the system.(3)

Table 5.1 shows that the difference between the proton and triton ener-

gies changes much -more rapidly at neutron energies in the low keV

region than does the sum of the proton and triton energies. Replace-

ment of the sum amplifier by a difference amplifier should improve

the system resolution by up to a factor of twenty.

5.3 Conclusions and Future Work

Instrumental neutron spectrum measurements will be made in

Blanket Assembly No. 2, using three different methods, to provide a

mapping of the differential neutron spectrum through the blanket.

Measurements with the He3 spectrometer are underway.

Changes are presently being made to improve beam collimation and

low-energy resolution.

Measurements with the proton recoil spectrometer have been

severely delayed by the manufacturer's prolonged postponements of

the delivery dates for the detectors. However, two detectors have

now been obtained on loan from E. F. Bennett of A.N.L., and are

presently being calibrated. The proton recoil measurements will be

made using essentially the same methods as those developed by

E. F. Bennett at A.N.L.(4, 5)

Although initial spectrum measurements are being made on the

neutron beam from the 1-in.-I.D. hole through the steel reflector of

Blanket No. 2, future measurements will also be made with the

detectors placed inside a specially-designed blanket subassembly.
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3
TABLE 5.1 Neutron Spectroscopy - He ISystem

w
(keV)
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E 3
(keV)

573
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595

760.9

E 4

(keV)

191
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(keV)
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6. NEUTRON SPECTRA FROM FOIL ACTIVATION

S. L. Ho and N. A. Passman

6.1 Introduction

The purpose of the work reported in this chapter is to evaluate

determination of neutron spectra by using foil activation. Although

this technique is one of long standing in the field of experimental

reactor physics, a number of possible improvements were investi-

gated. One major objective of the present work was to develop a

one-step, simultaneous multifoil-counting procedure based on Ge(Li)

spectrometry. This technique includes the use of the GAMANL code

(1) developed at M.I.T. to extract individual nuclide activities, which

can in turn be fed into existing codes, such as SAND II (2) to unfold

the energy spectrum of the neutrons in which the foil materials were

irradiated. This approach is preferable to methods which employ

individual foil counting, since it is much more amenable to automation.

6.2 Experimental Procedures

One of the more important steps in all foil activation methods is

the selection of the foil materials to be used. Criteria for selection

generally include: capture cross-section shape (resonance or

threshold) which emphasizes a particular part of the neutron spectrum,

intermediate half life (hours to days) to facilitate activation and counting,

and a distinctive decay gamma spectrum. In the present case, this

latter criterion is particularly important because of the need for

simultaneous resolution of all photopeaks in a common spectrum. It

rules out the use of fission foils, or nuclides identified primarily

through the ubiquitous 0.511-MeV photopeak. Table 6.1 lists the target

materials found most useful for the present applications, in which most

of the neutron flux lies in the range 100 eV to 5 MeV.



TABLE

Materials Used for Neutron

6.1

Spectrum Determination

Predominant y
Target Product Nuclide Half Life Analyzed

(Hours) (MeV)

Au Au-198 65 0.412

W W-187 24 0.479

Mn Mn-56 2.58 0.847

Mo Mo-99 67 0.141

Na Na-24 15 1.368

In In-115m 4.5 0.335

Ni Co-58 1728 0.810

Ti Sc-48 44 0.983

The above materials are used in the form of powder smaller than

35 mesh (16.5-mil diameter). Metal powder was used, except for

sodium which was used as carbonate. The materials are homogene-

ously mixed before loading in the foil capsule in order to subject all

materials to the same average neutron environment and to provide

the same mean counting geometry. A polyethylene vial was employed

for the foil capsule in the early runs. However, because the hydrogen

in the polyethylene can seriously perturb a fast spectrum, more recent

work has employed a tube of one of the "foil" materials, typically

nickel, as the capsule itself.

The counting equipment and procedures involved use of Ge(Li)

detectors, their attendant electronic systems, and the code GAMANL

to interpret the multichannel analyzer spectra. The essential features

of these counting systems has already been described in articles and

recent topical reports dealing with M.I.T. practice in this field.

63
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6.3 Preliminary Results

Powder-containing capsules have been irradiated in the 6CH1

Transistor Irradiation Facility at the MITR. This facility was

designed to produce a fission spectrum of neutrons for radiation

damage studies on semiconductors. Figure 6.1 shows the unfolded

<(E) above 1 MeV compared with the theoretical fission spectrum.

Also shown are the effects of changing the specified error tolerance

(in terms of percent standard deviation, S.D.) fed into SAND-II. The

introduction of an apparently spurious flux dip at 6.5 MeV due to

overly restrictive error limits is clearly shown in Figure 6.1, and

is a typical consequence of the SAND-II algorithm (4). If intelligently

applied, however, SAND-II will indeed give reasonable results.

The spectrum above 1 MeV is determined primarily from the

threshold foil activities, while that below 10 keV is characterized

mainly through resonance absorption. In the limited experimental

work to date, it has proven more difficult to unfold nonanomalous

spectra in the lower energy region. This result would also appear to

be in essential agreement with the experiences reported by Newman

(4), who applied SAND-II to ordinary individual-foil experiments in

an LMFBR spectrum; and we also expect to be able to achieve equally

suitable results eventually through diligent error analysis and sensi-

tivity studies.

6.4 Discussion

The objective of the work discussed in this chapter is, of course,

the determination of the energy spectrum of the ambient neutrons in

the blanket mock-up. At the least, these measurements will provide

a valuable supplement to, and check upon, the instrumentally

determined spectra above 1 keV. Below 1 keV the foil method may

well be the only proven, convenient approach.

During the coming year a number of aspects of the foil method

will be improved upon:

(1) An evaluation will be made of the relative merits of the powder

(this work) vs. foil (see, for example, reference (4) for a recent
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application very similar to that of present concern) versions of

the material activation technique. While the powder capsule

method is more suited to automation, it must still be shown that

good results can be achieved with the smaller selection of suit-

able foil materials, and that the use of fine, widely dispersed

particles can eliminate the need for resonance self-shielding

corrections.

(2) Alternative unfolding techniques to SAND-II will be evaluated. It

seems prudent to require that each set of data be unfolded by at

least two independent schemes to help insure against erroneous

interpretation of the data.

(3) Alternative gamma analysis methods to GAMANL will be evalu-

ated. It is possible, for example, to achieve close to an on-line

data analysis capability using the project's PDP/8L computer

and available data processing program packages (5).

(4) An irradiation in a 1/E spectrum will be carried out to check

the accuracy of the method below 1 keV and to establish a

detection system response function suitable for correcting out

idiosyncracies introduced into unknown spectra by the overall

data processing complex.

This work has presently advanced to the stage where there does

not appear to be any serious obstacle to implementation of the material

activation technique for determination of blanket mock-up spectra.
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7. NEUTRON SPECTRUM MEASUREMENTS

BY PROMPT GAMMA SPECTROMETRY

C. Forsberg and D. Shupe

7.1 Introduction

Work is presently being carried out as part of the LMFBR

Blanket Physics Project to develop a neutron spectrometer based on

the analysis of the prompt gamma spectrum due to neutron capture

by a selected target material.

7.2 Principle of Operation

When a neutron is captured by a target nucleus, the resulting

excited nucleus emits one or more prompt gamma rays. The relative

intensities of these prompt gamma rays are functions of the incident

neutron energy. Hence, it may be possible, in principle at least, to

determine the spectrum of the incident neutrons by analyzing the

spectrum of the prompt gammas emitted by the target material.

7.3 Spectrometer Development

At present, tantalum-181 is being investigated as the preferred

target material. It is anticipated that a tantalum spectrometer would

have its greatest sensitivity in the measurement of neutron energies

between 10 eV and 1 keV - a region where other methods are not

entirely adequate.

Ta181 target material is being irradiated at the M.I.T. reactor in

both thermal and fission neutron fluxes; irradiations will also be made

shortly in a 1/E neutron flux. The purpose of these measurements is
181

to determine whether the prompt gamma spectrum of Ta shows

sufficient variation as a function of neutron energy to make this

approach worthwhile. This work is continuing, and will also involve

analytical evaluations which take into account recent experimental and
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theoretical information published on the variation of the prompt

gamma yield of Ta181 with incident neutron energy.(1, 2)

A tantalum spectrometer system is currently being designed and

assembled. Following evaluation tests, it will be used for neutron

spectrum measurements in the Blanket Test Facility if it shows suf-

ficient promise of successful performance.
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8. APPLICATIONS OF PROMPT GAMMA SPECTROSCOPY

TO LMFBR RESEARCH

C. S. Kang

8.1 Introduction

The techniques of prompt gamma-ray spectroscopy, using high

resolution lithium-drifted germanium detectors, have been highly

developed at M. I. T. and at other institutions. It is the purpose of the

present work to investigate the application of prompt gamma spec-

troscopy methods in several areas of interest to the research program

of the LMFBR Blanket Physics Project.

One such area has already been noted; prompt gamma spec-

troscopy was used to determine the hydrogen content of the sodium

chromate powder used in Blanket Assembly No. 2 (see section 3.3.2).

The two primary areas now being investigated are:

(a) the determination of the relative reaction rates of the con-

stituent materials of Blanket No. 2 for comparison with

similar results to be obtained by conventional foil-counting

methods;

(b) the feasibility of fast neutron spectroscopy by analysis of

energy shift or broadening of the 2.223-MeV capture gamma

line resulting from neutron capture by hydrogen or other

materials.

These two areas are discussed below.

8.2 Determination of Reaction Rates

Work is presently under way in an effort to measure the relative

reaction rates of constituent materials of Blanket Assembly No. 2 (viz.

U ", Na, Cr and Fe). This is to be accomplished by measuring the

relative intensities of the characteristic prompt gamma rays resulting

from neutron capture by these materials. Measurements of the reaction
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rates will aid in determining the overall blanket neutron balance for

Blanket No. 2.

Preliminary prompt gamma spectrum measurements have been

made using the gamma beam from the 1 inch-I.D. beam hole through

the steel reflector of Blanket No. 2 (see Fig. 3.2). Further measure-

ments will be made through the coming year.

8.3 Fast Neutron Spectroscopy

An investigation is also being made of the feasibility of measur-

ing fast neutron spectra by analysis of the energy shift in the 2.223-

MeV prompt gamma line resulting from neutron capture by hydrogen.

Preliminary evaluation measurements are being made with a

Cf 2 5 2 fission neutron source. Work to establish the feasibility of this

method will continue, and, if successful, measurements will be made

in Blanket No. 2.

8.4 Conclusions

Work is currently being performed to measure material reaction

rates in Blanket No. 2 using prompt gamma spectroscopy, and to

develop a method for fast neutron spectroscopy based on the analysis

of the hydrogen prompt gamma line. Work in both these areas will

continue in the coming year.
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9. HETEROGENEITY EFFECTS IN LMFBR

BLANKET FUEL ELEMENTS

W. J. Westlake, Jr.

9.1 Introduction

If the detailed reaction rates within a unit cell have appreciable

spatial variation, the neutron economy will differ from that predicted

by a reactor model employing homogenized material regions. An

investigation of the reaction rate distributions within a fuel rod is one

method of determining the influence of heterogeneity effects on the

neutron balance. The effects attributed to heterogeneities in LMFBR's

are expected to be most significant in the blanket where severe spectral

degradation can occur.

It has been shown that the predominant heterogeneity effects are

due to the spatial dependence of the U238 fission and capture reaction

rates within a fuel rod in LMFBR cores and fast critical assemblies (1).

Intra-rod distributions of fission and capture reaction rates can be

measured directly using uranium foil activation techniques. The

purpose of the present work was to perform such foil activations within

the 0.25 inch-diameter, uranium metal fuel rods in Blanket Assembly

No. 2.

9.2 Experimental Technique

The experimental work consisted of irradiating both 1/16 inch-

diameter, depleted uranium foils and 1/4 inch-diameter, two-piece

depleted uranium foils, placed within a 1/4 inch-diameter blanket fuel

rod of metallic uranium, 1.016% enriched in U235 (see Fig. 9.1).

Blanket fuel rods containing the depleted uranium foils were loaded in

Blanket Assembly No. 2 in various locations (see Fig. 9.2). During

irradiation, the rods were rotated at 1 rpm in order to cancel out the

effects of the blanket flux gradient.
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The foils were removed from the blanket following irradiation

and gamma-counted with a NaI(Tl) scintillation crystal detector and

single-channel analyzer counting system. The fission product and

Np239 activities (due to the (n, f) and (n, -y) reactions on U238

respectively) were counted.

9.3 Experimental Results

The measured intra-rod U238 capture and fission reaction rate

distributions obtained in the foil irradiation runs are shown in

Figures 9.3, 9.4 and 9.5 (the three measurement positions in

Blanket No. 2 are shown in Fig. 9.2).

The U238 capture rate distributions shown in Figs. 9.3 and 9.4

clearly indicate a significant difference between the rod centerline

and rod surface reaction rates. This difference approaches 20% for

the microbutton foil irradiation results obtained with the test fuel

rod placed in the rear row of the blanket assembly (see Fig. 9.3).

A 7% to 14% variation in the regional U238 capture rates was obtained

with the two-piece foil sets (see Fig. 9.4). There is good agreement

between the microbutton and two-piece foil measurements, but

greater confidence must be given to the two-piece foil results.

Because of their greater weight (65 milligrams as opposed to 4 milli-

grams for the microbutton foils), count rates were higher and the

importance of foil material loss due to flaking during handling was

reduced. The microbutton foil data shown in Fig. 9.3 would seem to

indicate that the intra-rod U238 capture rate depression is greater

in the front row of the blanket assembly than in the middle row -

which is in disagreement with the expected results. It is possible

that the errors in the centerline foil activities were large enough to

produce sufficient error in the normalized activities to explain this

result. In any event, the more reliable two-piece foil data (see

Fig. 9.4) does not appear to corroborate this result.

The two-region foil set results shown in Fig. 9.5 indicate (with

the exception of one of the four foil sets included) that the regional

variation in the U238 fission rate is the same for all runs within ± 1.5%,
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is much less than the regional variation found in the U238 capture rate,

and is therefore negligible in terms of its effect upon the blanket

neutron balance.

The ANISN code was used for 16-group, 1-D, S8 transport theory

calculations on several models of a Blanket No. 2 unit cell. No cor-

rections were made for resonance self-shielding effects in the multi-

group cross sections. The calculated fuel rod surface to fuel rod

centerline reaction rate variations were -0.4% and +3.2% for U 2 3 8

fission and capture, respectively. The calculated intra-rod capture

rate variation (3.2%) is considerably smaller than the measured vari-

ation (10% to 20%). The large disagreement should be due in large part

to the effects of resonance self-shielding.

To check the effect of U238 resonance self-shielding, several gold

two-piece annular foil sets were irradiated in the test fuel rod in

Blanket No. 2. The two-region gold foil measurements showed that

the Au capture rate did indeed have much less spatial dependence

than the U238 capture rate; the specific activity of the two gold foils

differed by less than 1% in all cases. Thus it is clearly resonance self-

shielding and not overall flux depression which is the cause of the

depression in the U238 capture rate.

9.4 Conclusions

The predominant heterogeneity effect in fast reactor blankets is

that due to the spatial dependence of the U238 capture rate within a

fuel rod. The intra-rod U238 capture and fission rate distributions

have been measured in the 0.25 inch-diameter, uranium metal fuel of

B.T.F. Blanket No. 2. The measured rod surface to rod centerline

reaction rate variation was found to be between 10% and 20% for U 2 3 8

capture and between -1.5% and +1.5% for U 2 3 8 fission.

When two-piece annular gold foils were irradiated in the test fuel

rod, the specific activities of the two foils were found to differ by less

than 1% (as opposed to 7% to 14% for U 238). This demonstrates that

the observed U238 capture rate is largely due to U238 resonance self-

shielding.
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It should be noted that the fuel rods in Blanket No. 2 are metallic

and therefore have approximately twice the uranium density of the

UG2 which would be used in a real LMFBR blanket. This is offset to

some extent by the fact that blanket fuel rods will probably have

larger diameters (about 0.5 inch). On the other hand, the oxygen

contained in the UO 2 will provide appreciable internal moderation,

which should wash out some of the resonance flux depression en-

countered in the metallic fuel.

Heterogeneity measurements will be continued on Blankets No. 2

and No. 3. A UO 2-fueled blanket subassembly, containing metallic

sodium in the inter-rod volume, is being constructed in order to pro-

vide further data on blanket heterogeneities. The Blanket No. 2 unit

cell calculations will be refined and improved.
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10. BLANKET-REFLECTOR INTERACTIONS

S. Ahmed Ali

10.1 Introduction

In preparation for the experimental research program involving

Blanket Assemblies No. 2 and No. 3, an investigation was made of the

effect of the reflector thickness and composition upon the detailed

neutron reaction rates in the blanket. The ANISN code was used to

perform 16-group (modified Hansen-Roach cross-section set), 1-D,

S8 transport theory calculations on a model of the Blanket Test

Facility consisting of the converter, Blanket No. 2 and a reflector.

A variety of reflector thicknesses and compositions were examined.

10.2 Effect of Reflector Thickness

To examine the effect of reflector thickness on blanket reaction

rates, ANISN calculations were made for reflector thicknesses vary-

ing from zero to 30 inches; the blanket thickness remained constant

at 18 inches. The calculations were made for two reflector

compositions - an iron reflector and a "reflector" having the same

composition as the blanket.

Figure 10.1 shows (a) the total absorption rate plus the lateral
2

leakage rate in the blanket (i.e,, I a+DB 2), and (b) the leakage rate

from the blanket into the reflector, as functions of the reflector thick-

ness for both the iron reflector and for the extended blanket. The

normalization is to one thermal source neutron per second in the con-

verter assembly. It is seen that an 18-inch reflector of either iron

or blanket material is effectively infinite, since the absorption and

leakage rates are not changed by making the reflector thickness

greater than 18 inches. The total fission rate in the blanket was found

to be similarly affected. These calculations showed that the 18 inch-

thick reflector used on Blanket No. 2 would be effectively infinite in

extent in terms of its effect on the blanket neutron balance, as intended.
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10.3 Effect of Reflector Composition

In order to examine the effect of the reflector composition on the

blanket reaction rates, the ANISN code was used to calculate the axial

variation of the U238 capture rate in Blanket No. 2 for a variety of

reflector compositions. The reflector thickness remained constant at

18 inches.

Figure 10.2 shows the U238 axial (Z-direction) capture rate in

Blanket No. 2 for reflectors composed of Na, Fe, Fe 30 ZrO2 and

BeO; these are compared to a base case composed of blanket material,
238

i.e., an extended blanket. It is seen that the U capture rate in the

blanket is increased only slightly by using an iron or sodium reflector

instead of extending the blanket. The increase in the U238 capture rate

at the outer edge of the blanket is greatest for the lightest reflector

materials. A BeO reflector would increase the total capture rate in

Blanket No. 2 by about 10%. This would give rise to an essentially

equivalent increase in blanket plutonium production. Alternatively,

Pu239 production could be maintained constant using a thinner blanket.

Both aspects would have potential economic advantages. As can also

be seen in Fig. 10.2, the reflector-induced flux perturbation does not

propagate more than about 8 inches back into the blanket, and hence

the choice of reflector material has no appreciable effect upon the core.

10.4 Conclusions

ANISN calculations have shown that an 18-inch reflector for

Blanket Assembly No. 2 is effectively infinite. It was further found

that the total absorption rate in the 18 inch-thick blanket is only 2%

higher with an 18-inch iron reflector than if the blanket is extended

18 inches further (see Fig. 10.1), and also very little different from

the Na reflected case. These facts led to the choice of an 18-inch

iron reflector for Blanket No. 2.

Calculations to determine the effect of the reflector composition

on blanket reaction rates have shown that light reflectors providing

external moderation can produce a significant increase in blanket

capture rates (about 10% for a BeO reflector). Consideration is
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therefore being given to replacing the iron reflector of Blanket No. 2

by a graphite or BeO reflector for the Blanket No. 3 experiments.

ANISN calculations will be made shortly to determine the effects of a

graphite reflector.
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11. A ONE-GROUP MODEL

FOR FAST REACTOR CALCULATIONS

M. K. Sheaffer

11.1 Introduction

A key assumption underlying the present research with the

Blanket Test Facility is that these studies can be conducted

efficiently without the use of a critical assembly. This makes it

highly desirable that core spectral properties be characterized in

a concise manner. As will be described below, investigation of this

area resulted not only in the development of two simple core charac-

terization parameters, but also in a flexible and surprisingly accu-

rate one-group method for core neutronic calculations. A detailed

description of this method will be presented in the topical report:

M. K. Shaeffer, M. J. Driscoll and I. Kaplan, "A One-
Group Method for Fast Reactor Calculations,"
MIT-4105-1, MITNE-108 (September 1970).

11.2 Spectral Characterization Parameter, S

The primary theoretical basis for this model is continuous

slowing-down theory, which has demonstrated previous successes

in correlating the energy spectra of fast reactors.(1, 2, 3) Appli-

cation of slowing-down theory yields the following familiar

expression for the capture escape probability for a weakly

absorbing infinite medium:

E Ea ( dE

-fs(E)K
P(E -- E) = e (11.1)

where P(E0 - E) is the probability that a neutron of energy E 0 will

reach a lower energy E without capture, and where

Za(E) 
1

( s(E) M(E)
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is the reciprocal of the moderating ratio, M(E), of the medium.

Avaev has shown 4 ) that the inverse moderating ratio term in the

integral of Eq. (11.1) is best replaced by the modified form:

z (E)1 = (E a (E) (11.2)
a(E) + s

for strongly absorbing media. This suggests that the starting point in

the search for a spectral characterization parameter might well be a

function of the form:

S' a (11.3)
a s

where the cross sections in Eq. (11.3) have been averaged over the

flux spectrum. Although there is no particular reason to expect that

flux averaging will do anything but define a mean spectral index, it

is desirable to average over 4(E) in order to preserve reaction rates

when the one-group cross sections are used in criticality calculations.

Application of one-group theory now permits two important

simplifications:

(a) Leakage can be accounted for by adding the familiar DB 2

term to Zal

(b) criticality can be determined by applying the neutron balance,
2

Z + DB =vE .a B Vf.

Equation (11.3) is thereby modified to the form:

s"t = .E (11.4)

Several practical considerations can now be taken into account

to simplify calculation of the terms appearing in Eq. (11.4). First,

while the slowing-down power, E S, should theoretically include both

elastic and inelastic scattering, only the ftmrim will be included:

comparison of Figs. 11.1 and 11.2 shows that in the energy range

where important cross sections, such as the fission cross section of

Pu 239, are strong functions of energy, elastic scattering predomi-

nates. Second, in the interests of simplicity, the scattering cross
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section, Z s, will be replaced by the transport cross section, Ztr'
since it can be shown that (1s and (Etr do in fact have the same

general magnitude and functional dependence.

The candidate characterization parameter then becomes:

S V = f + . (11.5)
f ~el~tr

11.3 Theoretical Considerations for a Characterization Parameter

for Threshold Fission

Investigation of the spectral parameter, S, as discussed in the

next section, revealed its usefulness in correlating all cross sections

except those for fission of the fertile isotopes. Such a result was not

unexpected because of the nature of the threshold process and the

neglecting of inelastic slowing-down, which predominates in this

energy region.

If the cross section for threshold fission is idealized as having

step-function dependence with a constant value, a fT' above a

threshold energy, ET, then the one-group averaged cross section is

given by the relation,

f0a (E) O(E) dE J 4(E) dE
- 0 T

f f 04(E) dE fT OTOTAL (116)
0

It is next assumed that the flux above E T is proportional to the

uncollided neutron flux, or,

kUNCOL
a = c a . (11.7)

f TOTAL

A neutron balance gives

VE f TOTAL =R OUNCOL, (11.8)

where ZR is the effective removal cross section for first flight

neutrons. Combining Eq. (11.7) and Eq. (11.8) yields:
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S= c afT11

Equation (11.9) suggests that the ratio,

R = -, (11.10)
R

is an approximate spectral characterization parameter for threshold

cross sections. Two important features of this parameter should be

emphasized. First, regardless of core composition, the shape of

the neutron flux above 1 MeV is essentially equivalent to the fission

spectrum, X(E). Hence, aR may be computed from the relation,

f X(E) [ a (E) + -e(E-E ') + in(E-E ')] dE
_ T

R f~ 00(E) dE
ET

where E' < ET. Equation (11.11) reveals the important fact that aR
depends only on the cross sections of each element and is independent

of the core spectrum. Hence, microscopic removal cross sections

can be computed easily from multigroup sets and are constant,

regardless of the core composition. This cross section can also be

determined experimentally using the classical sphere transmission

technique.

Second, examination of Eq. (11.5) reveals that S is a function of

VZf; hence, it is also a function of R if the core contains any fertile

isotopes. The iteration procedure required to perform criticality

calculations using S and R (described in the next section) is con-

siderably simplified if Eq. (11.5) and Eq. (11.10) are combined to

yield,

S ~tr
R =. (11.12)

,R
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11.4 Development and Numerical Tests of o Correlation

The procedure used to develop and evaluate a correlation between

one-group averaged cross sections and S and R was as follows.

First, a reference multigroup cross section set, in this case the

26-group ABBN set,(5) was selected and fundamental mode spectra

were calculated for forty-five representative fast reactor cores (see

Table 11.1). The cases investigated included oxide-, carbide- and

metal-fueled cores having compositions in the range typical of large,

liquid metal cooled, fast breeder reactors.

Next, the 26-group spectra were used to collapse fission,

absorption and transport cross sections into one-group averaged

values. The parameters S and R were then calculated for each case.

Ten of the cases having S values uniformly over the full range

encountered were selected to develop the cross-section correlations,

and the other cases were reserved to test the completed one-group

model.

The existence of a correlation between one-group a values and S

and R was then investigated. It was found that there was a linear

relationship between the cross-section values and S or R on a log-log

plot. Hence, it was decided to adopt the convention,

a = o'1Sg and u = a1Rg . (11.13)

Figures 11.3 and 11.4 show some sample cross-section plots support-

ing these choices of functional dependence.

A least-squares fit was then performed to determine the two

parameters o and g using the ten sets of data selected; all forty-

three materials of the ABBN set were correlated.

11.5 Iterative Procedure for Applying the One-Group Model

The iterative procedure required to obtain the values of S and R

for any core is as follows. An initial value of S is estimated; the

cross sections, tr ' are then calculated, and R is determined from

Eq. (11.11). vZf is then computed, and a new value of S is calculated

from Eq. (11.5). This procedure is repeated until S has converged to

within the required precision (typically about 1%). The iteration was



TABLE 11.1

Composition (Volume Percent) of Fast Reactor Cores Investigated

OXIDE CORES CARBIDE CORES METAL CORES

No. PuO2  UO 2  Na Fe No. PuC UC Na Fe No. Pu U Na Fe

1 5 20 50 25 1 5 20 50 25 1 5 30 50 15

2 5 30 50 15 2 5 25 50 20 2 5 20 50 25

3 5 30 40 25 3 5 30 40 25 3 5 30 40 25

4 5 35 35 25 4 5 35 35 25 4 5 35 35 25

5 5 25 50 20 5' 7 18 50 25 5 5 25 50 20

6 5 25 45 25 6 5 25 45 25 6 5 25 45 25

7 5 25 40 25 7 5 25 40 25 7 5 25 40 25

8 5 25 25 25 8 5 25 25 25 8 5 25 25 25

9 5 25 10 25 9 5 25 10 25 9 5 25 10 25

10 5 25 0 25 10 5 25 0 25 10 5 25 0 25

11 8 22 45 25 11 5 30 50 15 11 8 22 45 25

12 7 28 40 25 12 8 22 45 25 12 3 27 45 25

13 9 26 40 25 13 4 26 45 25 13 7 28 40 25

14 4 27 45 24 14 7 28 40 25 14 9 26 40 25

15 5 26 45 24 15 9 26 40 25 15' 3.5 26.5 45 25

Denotes cores used for correlation.

(0
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found to converge rapidly; in the forty-five test cases considered, no

more than two iterations were required to obtain S and R. Once S and

R are known, all other cross sections (e.g., Z a) necessary for the one-

group calculation can be evaluated.

11.6 Comparison of 1-Group and 26-Group Results

Tables 11.2, 11.3 and 11.4 show the errors in material buckling

(B 2), critical enrichment (E), infinite multiplication factor (k,),

reactivity (Ak/k), core conversion ratio (b ) and the ratio of fertile

to fissile fissions (628) for the aforementioned cases. The errors in

B 2, koc and 628 were calculated directly, since all calculations were

based on the fundamental mode approximation. The errors in the

other parameters were estimated using suitable one-group equations.(6)

As can be seen from the tabulated results, the average errors are
21.77% in B , 0.218% in E, 0.59% in k , 0.69% in Ak/k, 2.19% in b.

and 2.17% in 628. This is remarkably good agreement.

11.7 Further Extensions of the One-Group Model

Although the forty-five initial test cases all involved liquid metal

cores fueled with Pu 2 3 9 and U 2 3 8 , a series of parametric studies has

demonstrated its usefulness for all practical fuel, cladding, coolant,

structural and control materials. Further utilization of the model (7

has indicated also its ability to account for spectral effects in sodium

voiding, and recent research has applied the model successfully in

predicting prompt neutron lifetimes. Present investigation is aimed

toward extending the model to treat Doppler temperature effects and

blanket region calculations.



TABLE 11.2 Comparison of 1-Group and 26-Group Calculations for Oxide Cores

Core B2 X103 AB 2 /B2 A E A k /k A k/k A b. A 62 8

(M) (%) (%) (%) (%) (%)

1 1.542 1.77 .221 1.15 -. 622 1.82 4.51
2 1.283 -1.18 -. 090 -. 334 .338 -. 365 1.11
3 1.293 -1.27 -. 686 -. 189 .330 -. 918 2.58
4 1.130 -4.10 -. 211 -.886 .900 -1.76 1.77
5 1.412 .564 .054 .433 -. 179 .655 2.81

6 1.436 .638 .059 .508 -.195 .358 3.49

7 1.423 .435 .041 .379 -.135 .122 3.39

8 1.378 -.229 -.023 -.074 .075 -.685 3.04

9 1.336 -. 968 -. 102 -. 637 .337 -1.74 2.77

10 1.287 -1.61 -. 175 -. 132 .581 -3.01 2.58
11 3.146 2.07 .478 .340 -.954 2.92 4.23

12 2.606 .952 .136 .215 -. 378 .951 3.07
13 3.752 1.99 .421 .076 -. 922 2.68 3.83
14 .694 -2.45 -. 104 -. 266 .440 -1.18 3.02
15 1.407 .322 .028 .360 -.096 .144 3.17

Average: 1.37 0.142 0.399 0.432 1.29 3.02

Denotes core used to develop correlation.

As determined by one-group model.



TABLE 11.3 Comparison of 1-Group and 26-Group Calculations for Carbide Cores

2 3** 2 2 Ekkok/AbCore B X10 AB /B 2A8 A k /k A k/k A b A 6

(TM) (Mo) (M) (To) (Mo) (TM)

1 2.224 2.18 .311 .342 -. 868 .792 2.55

2 2.100 1.12 .125 -. 229 -. 410 -. 228 1.07

3 2.046 -. 493 -. 042 -. 842 .157 -. 198 .781
4 1.895 -2.65 -. 175 -1.50 .745 -3.13 .127
5* 3.516 2.79 .668 .196 -1.35 3.49 2.97
6 2.176 1.31 .141 -.110 -. 462 -.394 1.67

7 2.123 .798 .088 -. 289 -. 291 -.871 1.50

8 2.027 .390 .045 -.520 -.148 -1.39 1.11

9 1.924 -. 057 -. 007 -. 801 .023 -2.03 .661

10 1.850 -.399 -.050 -1.13 .162 -2.76 .345

11 1.973 -. 264 -. 024 -. 841 .090 -1.14 -. 297

12 4.262 2.15 .503 -.044 -1.06 3.55 2.37

13 1.287 -1.15 -.073 -.960 .200 -2.43 1.58

14 3.655 1.69 .266 -. 095 -. 732 .862 1.20

15 5.119 2.59 .591 -. 0009 -1.27 3.85 1.92

Average: 1,34 0.207 0.527 0.538 1.81 1.34

Denotes core used to develop correlation.

As determined by one-group model.

No, 001 I'M I I i -



TABLE 11.4 Comparison of 1-Group and 26-Group Calculations for Metal Cores

Core B2 X 103** AB2/B2 A E Akj/k, A k/k A b A 628
(%) (70) (70) (M) (70) (%)

1 4.168 -2.75 -. 345 -. 750 1.27 -1.87 -2.55

2 4.265 -. 392 -. 071 -. 598 .194 -. 660 -. 541

3 4.415 -3.11 -. 375 -1.05 1.40 -3.49 -2.11

4 4.427 -4.47 -. 454 -1.31 1.91 4.50 -2.63

5 4.219 -1.57 -. 233 -. 652 .749 -1.32 -1.59

6 4.360 -1.77 -. 258 -. 827 .836 -2.28 -1.52

7 4.284 -1.84 -. 270 -. 752 .874 -2.16 -1.56

8 4.044 -2.14 -. 321 -. 580 1.04 -1.86 -2.04

9 3.797 -2.44 -. 377 -. 34Q, 1.22 -1.40 -2.59

10 3.629 -2.65 -. 416 -. 144 1.34 -. 995 -2.99

11 7.759 .923 .246 .172 -. 508 7.37 .177

12 1.729 -8.19 -. 471 -2.83 2.48 -7.46 -. 866

13 6.943 -. 691 -. 133 -. 009 .359 2.12 -1.49

14 9.283 .720 .188 .457 -. 399 8.49 -. 225

15 2.447 -5.14 -. 414 -2.08 1.88 -6.13 9.52

Average: 2.59 0.305 0.837 1.10 3.47 2.16

Denotes core used to develop correlation.

As determined by one-group model. cc
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12. LMFBR BLANKET FUEL DEPLETION

AND ECONOMIC STUDIES

S. T. Brewer

12.1 Introduction

A study of LMFBR blanket fuel management economics is being

made as part of the LMFBR Blanket Physics Project. This work,

scoping and parametric in nature, has the objective of determining

the effect on plant power cost (mills/kWh) of various blanket design

parameters, such as composition (fissile, fertile, structure and

coolant), size, irradiation time, fuel management scheme,

core/blanket/reflector configuration, etc. By pointing out trends in

the optimum design of LMFBR blankets, and the relative economic

importance of the aforementioned design parameters, LMFBR

Blanket Physics Project planners will be aided in designing future

assemblies and experiments so as to yield the most useful results.

A base parameter in this work is the core size or rated capacity

of the plant. Since very large plants have recently been forecast,)

a wide range of plant sizes (100 MWe to 5000 MWe) will be examined.

One obvious effect is that blanket economic benefit diminishes with

increasing core size; indeed, for some sufficiently large core volume,

the sale of plutonium bred in the blanket will not compensate for the

fabrication and reprocessing costs of the blanket. This result has

been confirmed by simple hand calculations.

Fuel economics calculations require:

(a) a cost analysis model;

(b) a physics/depletion model to supply the load and

discharge inventories needed in the cost analysis

calculations.

These are described below.
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12.2 Cost Analysis Model

A survey of methods used in estimating levelized power costs

reveals vast disparities in definitions, assumptions and interpre-

tations. Unfortunately, it is not clear that these differences in

accounting methods and interpretations will not distort technical

or engineering choices.

A cost analysis model, similar to that of Vondy,(2) has been

derived for the present work. With LMFBR blankets, the problem

of the tax treatment of appreciating fuel is introduced. Unlike Vondy,

the present model assumes that the revenue from the sale of

plutonium is taxable. The model has been so derived that all cost

components are separable and additive.

12.3 Physics/Depletion Model

12.3.1 Requirements of the Model

Cost studies require the load and discharge inventories of

important fuel isotopes in individual batches. This necessitates

depletion, or "burnup," calculations which yield isotope concen-

trations as functions of irradiation time.

Blanket physics/depletion calculations are more involved (than

those for the core) for three main reasons:

(a) the spectrum softens rapidly with increasing distance from the

core-blanket interface;

(b) the spectrum hardens with time due to the large relative buildup

of plutonium;

(c) heterogeneous self-shielding effects are stronger in the softer

blanket spectrum.

Conventionally, the first two of these difficulties may be overcome

by increasing the number of energy groups. The second may also be

offset by recollapsing multigroup cross-section sets occasionally

during burnup. Both tactics require increased computer expense.

The effects of energy, spatial and time detail on LMFBR

physics/depletion calculations have been the subject of several recent

studies.(3, 4, 5) In particular, Little et al.(3) have found that
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satisfactory core inventory results can be obtained with very few

energy groups, and that the few group cross sections need not be

recalculated periodically during burnup. An early objective of the

present work has been to determine whether similar conclusions

could be reached for blankets, in order to provide a simplified

physics/depletion model suitable for the parametric studies.

12.3.2 Effect of the Number of Energy Groups

In order to examine the effect of the number of energy groups

on blanket physics/depletion calculations, a reference LMFBR

configuration (shown in Fig. 12.1) was selected and parallel

depletion calculations were performed using 26 energy groups

(Run A) and one group (Run B). The two-dimensional, multigroup

diffusion theory code, 2DB,(6) was used for both runs.

The parent cross-section data were taken from ENDF/B and

were processed by the cross-section generating code, 1DX, at

BNWL(8) to produce two, heterogeneity-corrected, 26-group cross

section sets (one each for the core and blanket). These final 26-

group sets served throughout depletion Run A. The one-group data

for Run B were obtained by collapsing the 26-group sets (by zone),

at time zero, using the Run A initial solution. This one-group set

remained in effect throughout the Run B calculation.

Runs A (26 groups) and B (1 group) covered 600 full power days,

with physics calculations (flux shape, local spectrum and neutron

balance) at 150-day intervals. The core and axial blanket were

replaced at 300 days, corresponding to an average core burnup of

about 100,000 MWD/MT. The radial blanket was assumed to be left

in place for the full 600 days. The energy release over the 600 days

was equivalent to a reactor power of 2576 Mwt, or approximately

1000 Mwe.

Table 12.1 shows representative Pu239 concentrations obtained

in Runs A and B; only five of the fifteen radial blanket zones are

included. Similar results were obtained for U238 and the higher

plutonium isotopes.
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TABLE 12.1 Pu2 3 9

No parentheses= Run A (26 groups)
Parentheses Run B (1 group)

Concentrations (10~4 atoms/barn-cm)

Time (days): 0 150.0 300.0 300.0 450.0 600.0

Zone

1 9.100 7.792 6.787 9.100 7.853 6.893
(9.100) (7.811) (6.828) (9.100) (7.868) (6.925)

2 9.100 8.137 7.328 9.100 8.184 7.415
Core (9.100) (8.140) (7.339) (9.100) (8.184) (7.419)

3 9.100 8.393 7.780 9.100 8.413 7.811
(9.100) (8.395) (7.786) (9.100) (8.414) (7.818)

4 9.100 8.586 8.114 9.100 8.602 8.139
(9.100) (8.580) (8.103) (9.100) (8.594) (8.129)

5 0.000 2.242 4.075 4.075 5.540 6.726

Rad (0.000) (2.219) (4.067) (4.067) (5.524) (6.695)

BKT 8 0.000 1.822 3.392 3.392 4.722 5.870
BK on(0.000) (1.812) (3.413) (3.413) (4.748) (5.889)
(zones 11 0.000 1.253 2.422 2.422 3.492 4.492
along (0.000) (1.287) (2.509) (2.509) (3.603) (4.616)

plane) 14 0.000 0.6859 1.390 1.390 2.092 2.807
(0.000) (0.7670) (1.549) (1.549) (2.301) (3.056)

17 0.000 0.2920 0.6226 0.6226 0.9782 1.370
(0.000) (0.3872) (0.8020) (0.8020) (1.222) (1.671)

20 0.000 2.595 4.314 0.000 2.487 4.161
(0.000) (2.567) (4.349) (0.000) (2.465) (4.203)

21 0.000 1.413 2.697 0.000 1.349 2.573
AxT (0.000) (1.499) (2.882) (0.000) (1.435) (2.760)

22 0.000 1.464 2.695 0.000 1.434 2.645
(0.000) (1.473) (2.744) (0.000) (1.437) (2.681)

23 0.000 0.7607 1.533 0.000 0.7454 1.500
(0.000) (0.8336) (1.677) (0.000) (0.8135) (1.634)

New core and axial blanket.
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The shape and magnitude of the total flux and power density

agreed well between Runs A and B. In view of this, and the minor

variation of cross sections which enter the nuclide rate equations

as coefficients, it is understandable that nuclide concentrations

predicted by Runs A and B agree closely. The earlier conclusions

regarding core depletion results(3) were confirmed.

In the blanket, the spectrum and therefore the effective one-

group cross sections vary with position, but change only moderately

with time (less than 10% change in a s at the outer edge of the

blanket in 600 days). A particularly interesting result which arose

from these calculations was that the U238 capture cross section

was found to increase linearly with depth into the blanket.

For the purpose of calculating time-dependent compositions in

survey studies, one-group cross sections - fixed throughout burnup -

may thus be used in the blanket provided input cross sections have

sufficient spatial detail. Cross-section spatial detail is thereby

substituted for energy detail, resulting in large savings in compu-

tation time with little loss of accuracy in calculating inventories.

The 26-group computation (Run A) required 93 minutes running time

on an IBM 360/65, while the 1-group computation (Run B) required

only 9 minutes on the same machine.

12.4 Conclusions

The purpose of the present work is to study the effect of various

blanket design parameters on plant power cost, and to characterize

their interrelationship and relative economic importance. This in

turn will aid in planning the experimental program of the LMFBR

Blanket Physics project beyond Blanket No. 2.

Calculations with the 2DB code have shown that one-group burn-

up calculations provide satisfactory precision in predicting fissile

and fertile inventories in the blanket, provided sufficient spatial

detail in the cross sections is substituted for the energy detail. The

one-group effective cross sections have been found to vary slowly

with time (less than 10% change at the outer edge of the blanket after

600 days), and the U238 capture cross section has been found to
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increase linearly through the blanket.

The slow variation of the energy-averaged cross sections with

time suggests that it might not be particularly useful to simulate

partially burnt-up blankets on the Blanket Test Facility (this would

be accomplished by loading fuel into a blanket assembly with a

suitable U 2 3 5 enrichment gradient).

Presently, the 2DB buirnup calculations are being repeated with

the steel and sodium outer reflector replaced by a graphite reflector.

This will indicate whether or not it would be useful to replace the

steel reflector of Blanket Assembly No. 2 by a graphite reflector for

Blanket No. 3.

12.5 References

(1) "Fast Breeder Reactor Report," Edison Electric Institute
(April, 1968).

(2) Vondy, D., "Basis and Certain Features of the Discount
Technique," Appendix F of "A Comparative Evaluation
of Advanced Converters," ORNL-3686 (January, 1965).

(3) Little, W. W,1 R. W. Hardie, L. D. O'Dell and R. B. Kidman,
"Fuel Management Models and Analysis for the Fast Test
Reactor (FTR)," BNWL-SA-2758 (December, 1969).

(4) Hirons, T. J., and R. D. O'Dell, "Calculational Modelling
Effects on Fast Breeder Fuel Cycle Analysis," LA-4187
(September, 1969); Nuclear Applications, Vol. 9, No. 1
(July, 1970).

(5) Hirons, T. J., and R. E. Alcouffe, "Heterogeneity Effects
on Large Fast Breeder Fuel-Cycle Calculations,"
ANS Transactions, Vol. 15, No. 1 (1970).

(6) Little, W. W., and R. W. Hardie, "2DB User's Manual -
Revision 1," BNWL-831, Rev. 1 (August, 1969).

(7) Little, W. W., and R. W. Hardie, "1DX, A One-Dimensional
Diffusion Code for Generating Effective Nuclear Cross
Sections," BNWL-954 (March, 1969).

(8) Little, W. W., and R. W. Hardie, Personal communication
(April, May, 1970).



107

13. SUMMARY, CONCLUSIONS AND FUTURE WORK

M. J. Driscoll

13.1 Introduction

As noted in Chapter 1, this is the first annual report of the

LMFBR Blanket Physics Project at M. I. T. As such, one of its

major concerns is with the work carried out to complete construction

of the basic facility and initial blanket mock-up experiment (Chapters

2 and 3). Likewise, the initial experiments carried out on the facility

(Chapter 4) were designed to confirm that performance character-

istics matched design specifications. This phase of the research has

been essentially completed during the report period.

A second area of research involves work designed to establish

the capability for extracting the desired data, primarily material

activation and neutron spectra, from the experimental assemblies.

Chapters 5 and 6 describe the work which is farthest along, since it

involves the use of foil and instrumental techniques upon which con-

siderable prior effort has been expended by other activities in the

AEC's LMFBR development program. Chapters 7 and 8, on the other

hand, deal with other promising techniques designed to supplement

those in Chapters 5 and 6. For the most part, this represents ex-

tensions of previous work carried out at M. I. T. in the area of capture

gamma spectrometry. Since these latter methods are newer and are

being pursued at a lower priority than the former, this work is at a

still earlier stage of completion. For the most part, the work

described in Chapters 5 through 8 will be completed, or in advanced

stage of completion, by the end of the next annual report period.

The final general category under which work has been carried out

is concerned mainly with program direction and evaluation, including

determination of economic and neutronic features pertinent to the

selection of future blanket mock-ups (Chapters 10 and 12), the effects

of heterogeneity on mock-up measurements (Chapter 9) and the
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characterization of core driving spectra (Chapter 11). This work thus

has as its major function the identification of problems requiring

increased attention primarily during the third year of the present

contract.

13.2 Discussion

The most important conclusions which may be drawn from the

performance tests and operating experience on the Blanket Test

Facility and Blanket Mock-Up No. 2, to date, are:

1) The facility operates well within all design limits on both

operational and shutdown dose rates. Although it was not

an essential requirement of the original design, it has been

established that midweek access to the blanket mock-up is

feasible. This greatly facilitates operational flexibility and

improves the productivity of the entire operation.

2) Fundamental-mode cosine flux shapes are achieved in the

vertical and horizontal directions in the test blanket.

Furthermore, the same shapes are observed using detector

foils sensitive to different regions of the neutron spectrum.

Thus transverse leakage may be characterized by a simple

buckling term and the problem reduced to an effective one-

dimensional problem involving traverses through the blanket.

3) Streaming and backscatter effects have been adequately con-

trolled, being confined to a region approximately six inches

thick around the periphery of the blanket.

The remainder of the work discussed in this report is not yet at

a stage where such definitive conclusions can be drawn. However, a

number of potentially important trends are already evident:

1) The poorest agreement between calculations and experiment

occur in the steel reflector, quite probably due to the well-

known difficulties involved in describing neutron diffusion in

iron due to the window in its cross sections near 25 keV.
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2) Appreciable heterogeneous effects are observed in the U 2 3 8

capture reaction, which will clearly require both theoretical

and experimental clarification.

Finally, some work was completed showing that characterization

of core neutron spectra could be achieved using only two simple indices.

13.3 Future Work

During the coming contract year, July 1, 1970 through June 30,

1971, the following work is scheduled:

1) Completion of material activation traverses, including those using

Pu239 foils, through Blanket Mock-Up No. 2. These traverses will

be compared with results from ANISN S 8 , 16-group calculations.

2) Completion of neutron spectrum measurements in Blanket No. 2,

using both foil and instrumental methods.

3) Evaluation of the feasibility of inferring ambient neutron spectra

from capture gamma-ray spectra. This work and that in 2) above

should permit us to standardize on two independent methods for

application in future studies.

4) Construction of Blanket No. 3 subsequent to a more detailed evalu-

ation of economic and neutronic trends in blanket design. At pre-

sent, it is tentatively considered that Blanket No. 3 will be a two-

row version of Blanket No. 2 having a moderating reflector

(probably graphite).

5) Evaluation of heterogeneous effects, especially on U238 capture,

but also on the activation of foil materials having prominent

capture resonances. This will include measurements in a real-

istic blanket subassembly constructed of UO 2 fuel, stainless steel

cladding and Na coolant.

6) Definition and distribution of a benchmark problem corresponding

to Blanket No. 2 to interested LMFBR activities to enable them to

test their calculational methods against measured data.

The third year of the contract, July 1, 1972 through June 30, 1973,

will be devoted to completion of work on Blanket No. 3 and on Blanket

No. 4 (for which a final composition has not yet been specified).
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Appendix A

THESIS RESEARCH TOPICS

Thesis research topics currently under way are as follows:

(a) T. C. Leung, "Foil Activation Measurements in Blanket No. 2,"
Sc. D. Thesis; measurements completed by 12/31/70, analysis
by 6/1/71, topical report by 9/1/71.

(b) N. R. Ortiz, "Instrumental Spectrum Measurements in Blanket
No. 2," Sc. D. Thesis; same schedule as (a) above.

(c) S. T. Brewer, "Blanket Burnup Effects Calculations," Ph. D.
Thesis; computations completed by 9/1/70, topical report by
12/31/70.

(d) C. Tzanos, "Blanket Optimization Analyses," Sc. D. Thesis;
started 6/1/70, estimated completed by 12/31/71.

(e) M. K. Sheaffer, "Simple LMFBR Calculation Methods,"
Ph. D. Thesis; topical report by 10/1/70.

(f) C. S. Kang, "Prompt Gamma Spectroscopy on Blanket No. 2,"
Sc. D. Thesis; same schedule as (a) above.

(g) N. A. Passman, "Neutron Spectrometry on Blanket No. 2 Using
Foil Methods," S. M. Thesis; completed by 8/31/70.


