340 research outputs found

    Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    Full text link
    The specific mechanisms which leads to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2TiO_2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: irreversible sticking and size independent diffusion. Our model is able to reproduce the fractal dimensions and the area distributions of the nanostructures obtained in the experiments for different densities of the ablated material. The comparison of theory and experiment show that such fractal aggregates are formed after landing of the ablated material on the substrate surface by a diffusive mechanism. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.Comment: 21 page

    Cooperation among cancer cells: applying game theory to cancer

    Get PDF
    Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation

    Evolutionary dynamics of tumor-stroma interactions in multiple myeloma

    Get PDF
    Cancer cells and stromal cells cooperate by exchanging diffusible factors that sustain tumor growth, a form of frequency-dependent selection that can be studied in the framework of evolutionary game theory. In the case of multiple myeloma, three types of cells (malignant plasma cells, osteoblasts and osteoclasts) exchange growth factors with different effects, and tumor-stroma interactions have been analysed using a model of cooperation with pairwise interactions. Here we show that a model in which growth factors have autocrine and paracrine effects on multiple cells, a more realistic assumption for tumor-stroma interactions, leads to different results, with implications for disease progression and treatment. In particular, the model reveals that reducing the number of malignant plasma cells below a critical threshold can lead to their extinction and thus to restore a healthy balance between osteoclast and osteoblast, a result in line with current therapies against multiple myeloma

    A Genome-Wide Screening and SNPs-to-Genes Approach to Identify Novel Genetic Risk Factors Associated with Frontotemporal Dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimer’s disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel SNPs-to-genes approach and functional annotation analysis. We identified two novel potential loci for FTD. Suggestive SNPs reached p-values ~10-7 and OR > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of -cis genes such as RFNG and AATK involved in neuronal genesis and differentiation, and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD-GWAS. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis

    Migraine mediates the influence of C677T MTHFR genotypes on ischemic stroke risk with a stroke-subtype effect.

    Get PDF
    BACKGROUND AND PURPOSE: The objective was to investigate the role of C677T MTHFR polymorphism in migraine pathogenesis and in the migraine-ischemic stroke pathway. METHODS: A first genotype-migraine association study was conducted on 100 patients with migraine with aura (MA), 106 with migraine without aura (MO), and 105 subjects without migraine, which provided evidence in favor of association of the TT677 MTHFR genotype with increased risk of MA compared with both control subjects (OR, 2.48; 95% CI, 1.11 to 5.58) and patients with MO (OR, 2.21; 95% CI, 1.01 to 4.82). Based on these findings, mediational models of the genotype-migraine-stroke pathway were fitted on a group of 106 patients with spontaneous cervical artery dissection, 227 young patients whose ischemic stroke was unrelated to a spontaneous cervical artery dissection (noncervical artery dissection), and 187 control subjects, and a genotype-migraine partial mediation model was selected. RESULTS: Both migraine and the TT genotype were more strongly associated to the subgroup of patients with spontaneous cervical artery dissection (OR, 4.06; 95% CI, 1.63 to 10.02 for MA; OR, 5.45; 95% CI, 3.03 to 9.79 for MO; OR, 2.87; 95% CI, 1.45 to 5.68 for TT genotype) than to the subgroup of patients with noncervical artery dissection ischemic stroke (OR, 2.22; 95% CI, 1.00 to 4.96 for MA; OR, 1.81; 95% CI, 1.02 to 3.22 for TT genotype) as compared with controls. CONCLUSIONS: Migraine may act as mediator in the methylenetetrahydrofolate reductase-ischemic stroke pathway with a more prominent effect in the subgroup of patients with spontaneous artery dissection

    Cryotomography of budding influenza a virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end

    Get PDF
    Influenza viruses exhibit striking variations in particle morphology between strains. Clinical isolates of influenza A virus have been shown to produce long filamentous particles while laboratory-adapted strains are predominantly spherical. However, the role of the filamentous phenotype in the influenza virus infectious cycle remains undetermined. We used cryo-electron tomography to conduct the first three-dimensional study of filamentous virus ultrastructure in particles budding from infected cells. Filaments were often longer than 10 microns and sometimes had bulbous heads at their leading ends, some of which contained tubules we attribute to M1 while none had recognisable ribonucleoprotein (RNP) and hence genome segments. Long filaments that did not have bulbs were infrequently seen to bear an ordered complement of RNPs at their distal ends. Imaging of purified virus also revealed diverse filament morphologies; short rods (bacilliform virions) and longer filaments. Bacilliform virions contained an ordered complement of RNPs while longer filamentous particles were narrower and mostly appeared to lack this feature, but often contained fibrillar material along their entire length. The important ultrastructural differences between these diverse classes of particles raise the possibility of distinct morphogenetic pathways and functions during the infectious process

    Identification of guinea pig remains in the Pucará de Tilcara (Jujuy, Argentina): Evidence in favour of the presence of the Andean breed in the Quebrada de Humahuaca

    Get PDF
    In this article, we identified rodent remains found in the Pucará de Tilcara, an archaeological site from the Argentine Northwest that was occupied by humans from 1,100 ad until the Spanish conquest. The zooarchaeological analyses were carried out using anatomical descriptions and geometric morphometric analyses of the dorsal and ventral views of mandibular remains. The results and the archaeological context discussed showed that all the rodent remains could correspond to the Andean breed of domestic guinea pigs. The combination of the methods used here gave us a strong support to the taxonomical assignment. The presence of domestic guinea pigs in archaeological sites of the northwestern Argentina was never proposed. This approach allowed us to increase knowledge about the distribution of caviines in the region, and their relationship to anthropic processes.Fil: Lopez Geronazzo, Lautaro Nahuel. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Otero, Clarisa. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina. Universidad de Buenos Aires. Facultad de Filosofía y Letras; ArgentinaFil: Alvarez, Alicia. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina. Universidad Nacional de Jujuy. Instituto de Geología Minera; ArgentinaFil: Ercoli, Marcos Darío. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; Argentina. Universidad Nacional de Jujuy. Instituto de Geología Minera; ArgentinaFil: Cortés Delgado, Natalia. University of Illinois; Estados Unido

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error
    corecore