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Abstract. In this work, the Cumulative Vehicle Routing Problem
(CumVRP) is studied. It is a routing optimization problem, in which
the objective is to construct a set of vehicle routes with the minimum
cumulative cost in terms of distance and weight over a traveled arc. The
CumVRP can be defined with hard and soft time windows constraints
for incorporating customer service. To tackle this problem, a matheuris-
tic approach based on combining mathematical programming and an
iterative metaheuristic algorithm Greedy Randomized Adaptive Search
Procedure (GRASP) is proposed. In each step of our approach, a fea-
sible solution (set of routes) is built using GRASP, and, afterward, the
solution is optimized using a MILP optimizer. The main objective of
this research is to analyze the trade-off between the environmental cost
produced by the delivery of goods complying with the limits of time
windows and the customer’s dissatisfaction when these limits are vio-
lated at a certain time limit previously defined. The results show that
the environmental cost is reduced if the violation of the upper limits
of the customers’ time windows is allowed. These violations generate a
cost associated with penalties that are well balanced with respect to the
reduction of emissions.

Keywords: Cumulative Vehicle Routing Problem · Green VRP ·
Time windows · Matheuristic · GRASP · MILP

1 Introduction

Nowadays, there is increasing concern at enterprise and social levels concerning
greenhouse gas emissions. The transportation companies seek to offer a good
service to the customers while taking into account solutions that tackle climate
change. This circumstance has been widely studied in the area of Green Logis-
tics (GL), which considers a set of activities that propose measuring the envi-
ronmental impact of different product distribution strategies, minimizing the
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energy usage in logistics activities, reducing waste and managing its treatment
[1]. Currently, burning fossil fuels causes 80% of environmental pollution in the
world, and around 60% of this fuel is generated by the freight transport sector
[2]. Optimizing fuel consumption helps reduce the rate of environmental pol-
lution and health impacts. Moreover, fuel consumption by a vehicle is affected
by several factors, e.g.., distance traveled, weight and speed of the vehicle and
traffic, among others [3]. The inclusion of these factors in optimization models
increases the realism of the solutions but, on the other hand, increases their
complexity.

One of the main optimization problems in logistics to model freight distri-
bution is the well-known Vehicle Routing Problem (VRP, [4]). It is commonly
used for modeling transportation and logistics scenarios while optimizing a given
objective function, e.g., distance, traveling time, etc. A recent VRP variation con-
sidering the reduction of the cumulative cost, calculated based on the distance
traveled by a vehicle carrying a certain load, is the Cumulative VRP (CumVRP,
[5,6]), which is an NP-Hard problem. CumVRP belongs to the problems within
Green VRP area as it considers the reduction of fuel consumption [3,7]. Another
relevant aspect studied in the VRP related literature is the inclusion of time
window constraints such as in the VRP with time windows (VRP-TW), where
customers must be served within a predefined time interval [8,9]. When consid-
ering time windows, it can be distinguished between hard and soft time windows.
In the hard time windows case, a vehicle must serve the customers right at a
specified time interval, if the vehicle arrives earlier than the time window, it
has to wait, late arrival is not allowed. The soft time window case permits the
violation of the time window constraints subject to some penalty [10].

Considering previous discussion, in this work, we focus on analysing the inclu-
sion of time windows on the CumVRP. Firstly, we consider the case where the
freights distribution is constrained by hard time windows, and secondly, the case
where the service time is constrained by soft time windows so that time window
violations are permitted subject to penalization, i.e., the service is allowed to
begin outside the time windows at the cost of a given penalty. Depending on the
application, the use of soft time windows can reflect practical situations much
better than hard time windows [11].

The goal of including time windows into the CumVRP aims at analyzing
the trade-off between the environmental cost produced by the transportation
of goods to customers, complying with the intervals of the time windows and
infringement of quality service to the customers. Investigating on soft time win-
dows permits analyzing the contribution of soft time windows penalty and envi-
ronmental related costs. Furthermore, to provide feasible solutions for these prob-
lem variants, this work proposes a hybrid approach, specifically a matheuristic
(named MathGRASP). MathGRASP is based on combining a mathematical pro-
gramming approach (MILP optimizer) within the Greedy Randomized Adaptive
Search Procedure (GRASP) metaheuristic.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 describes the mathematical formulation of the CumVRP and
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CumVRP with hard and soft time windows. The solution approach based
matheuristic algorithm is given in Sect. 4. Computational experiments and
results are given in Sect. 5 and finally, we present the conclusions and future
work in Sect. 6.

2 Related Works

In the freight transportation industry, the importance of achieving optimal vehi-
cle routing considering sustainability factors is growing [12]. The area of Green
Vehicle Routing Problems (Green VRPs) is characterized by incorporating envi-
ronmental features (e.g., emissions per type of vehicle, energy minimization,
etc.). Solution approaches in this area aim at proposing effective routes to sat-
isfy the environmental concerns and commercial indicators of enterprises and
societies. An extensive survey on this can be found in the work of Lin et al. [13].

In recent years, the Cumulative Vehicle Routing Problem (CumVRP) has
received considerable attention from researchers. CumVRP has been introduced
by Kara et al. [5] and referred to as a linear model of fuel consumption [7], and
also as an energy minimization model [6]. The objective of the CumVRP is to
find a set of routes that minimize the total cumulative cost, calculated based on
the distance traveled by a vehicle transporting a specific weight load. In [3], it
is stated that CumVRP is a type of problem that belongs to the area of Green
VRPs, and in the study proposed in [7], some variations are suggested where the
models consider factors aimed at reducing fuel consumption.

Several algorithms and approaches have been designed and developed for
solving the CumVRP. Regarding exact algorithms, in [14] a mathematical model
for CumVRP is presented as a Set Covering Problem and solved by a Column
Generation Algorithm (CGA). However, the exact proposed algorithms demon-
strate solving a considerable number of instances optimally, but always require a
high amount of computational time and excessive memory consumption to solve
more complex ones. For large instances, it is known that this type of approaches
are not efficient enough to obtain the global optimum in reasonable times [15].

Heuristic and metaheuristic algorithms are able to find good quality solutions
in relatively small times [16]. These types of algorithms have shown promise in
solving VRPs: Clarke and Wright Savings algorithm (C&W) has been used in
[17] to address CumVRP with Limited Duration; a Simulated Annealing (SA)
is proposed in [18] for solving the previous problem considering the multi-trip
factor and minimize fuel consumption; in [19], a memetic heuristic is reported
that is aimed at solving CCVRP; an Iterated Greedy procedure is presented
in [20] to achieve larger instances of CCVRP, and the proposed metaheuristic
proves to be competitive.

3 Cumulative VRP

In this work, we address the Cumulative Vehicle Routing Problem (CumVRP)
proposed in [5]. The goal of the CumVRP is to reduce cumulative costs, calcu-
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lated based on the distance traveled by a vehicle carrying a certain load. The
following parameters are defined in the problem:

– V, set of customer nodes.
– A, set of edges or arc (i, j) ∈ A between each pairs of customers i, j ∈ V .
– dij , representing the travel distance between each arc (i, j) ∈ A.
– k, number of vehicles.
– ω, curb weight without associated weight load for each vehicle.
– Q, the maximum weight load for each vehicle.
– R, the flow capacity of the arcs of the network.

Let G = (V,A) be a directed graph where each node i ∈ V represents a
customer and each arc (i, j) ∈ A the distance between two customers i, j ∈ V .
The node 0 represents the depot vertex from where a homogeneous fleet of k
vehicles depart to satisfy the demand of the |V | − 1 customers. For each vehicle,
its curb weight ω is known and the maximum weight load that it can carry is
Q. The flow capacity of each arc of the network R is known (maximal value of
the flow in any arc of the network, for example, curb weight plus the capacity
of the vehicles). For each customer i > 0, there is a demand Q ≥ Qi > 0. The
cumulative cost of moving a vehicle from a customer i to a customer j is defined
as wij · dij . The decision variables are as follows:

– xij ∈ {0, 1}, ∀i, j ∈ V, set to 1 if the arc (i, j) is in the tour of a vehicle, and
0 otherwise.

– wij , ∀i, j ∈ V, the flow on the arc (i, j) if the vehicle goes from i to j, and 0
otherwise.

– cij , ∀i, j ∈ V, the cost of traversing an arc (i, j), is defined as wij · dij .

The objective function of CumVRP (1) is to find a set of routes of minimum
total cost where the cost is defined as the product of the distance of the arc (i, j)
and flow on this arc.

Min

V∑

i=0

V∑

j=0

dijwij (1)

In the CumVRP the following constraints are considered:

(a) Each customer has to be served exactly by one vehicle.
(b) Each route starts and ends at the depot.
(c) For each tour, the flow on the arcs accumulate as much as preceding node’s

supply in the case of collection or diminish as much as preceding node’s
demand in the case of delivery.

(d) The flow on any arc of each tour does not exceed the flow capacity of the
arcs.

(e) For each customer, the demand required must be satisfied.

In this research, we investigate the additions of time windows constraints
in the CumVRP. The following two variants of CumVRP are evaluated: (i)
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CumVRP-hTW, where the time windows cannot be violated, and (ii) CumVRP-
sTW, where the upper bound of the time windows can be violated at a certain
delay threshold.

The objective when solving CumVRP-hTW is based on obtaining a set of
subtours, in such a way that the cumulative cost added to the number of vehicles
used to supply the total demand is minimized. In the case of CumVRP-sTW, we
will minimize the cumulative cost added to the penalties for service delay and
use of vehicles. Both variants will be studied as delivery cases. Two variants are
proposed in the following subsections.

3.1 CumVRP with Hard Time Windows

The addition of the hard time windows constraints to the CumVRP allows estab-
lishing strict frames of time to indicate when the customer has to be served. To
properly include such features, the following parameters have to be incorporated:

Parameters:

– Li, ∀i ∈ V, lower bound of the time window from which the customer i must
be served.

– Ui, ∀i ∈ V, upper bound of the time window until which the customer i must
be served.

– Si, ∀i ∈ V, service time to serve customer i.
– M, big enough value.

Using the above parameters, the time interval [Li, Ui] represents the time win-
dows during which the customer i must be served.

Decision variable:

ti : time at which customer i starts to be serviced.

Objective function:

f1 =
V∑

i=0

V∑

j=0

dijwij (2)

f2 = Mk (3)
Min f1 + f2 (4)

In the CumVRP-hTW, besides the constraints presented for CumVRP from
(a) to (d), the following ones have to be considered for the correct consideration
of the time windows:

(f) The starting time for servicing a customer i ∈ V has to be equal to or greater
than Li time windows lower bound.

(g) The end service time of a customer i cannot exceed the Ui time window
bound.
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3.2 CumVRP with Soft Time Windows

Adding soft time windows constraints to the CumVRP allows establishing cus-
tomers’ time windows where its upper limit Ui does not have to be necessarily
satisfied, in such a case a penalization is applied. Thus, it is necessary to add the
parameters μ and P representing the allowed delay threshold and the penalty
applied to each time unit of delay, respectively. In addition, it is necessary to
include the following decision variables:

– yi ∈ {0, 1}, ∀i ∈ V, set to 1 if not complied with the upper limit for the time
window in the customer i, and 0 otherwise.

The objective function, besides considering f1 and f2 as defined in the model
for CumVRP-hTW, must incorporate the cost associated with penalties for vio-
lations (5), so it must be redefined as:

f3 =
V∑

i=1

(P (ti + Si − Ui))yi (5)

Min λ1f1 + f2 + λ3f3 (6)

The previous constraints from (a) to (f) remain in this formulation. The
constraint (g) is redefined as:

(h) The end service time of a customer i ∈ V , Ui, cannot be exceeded by more
than μ, i.e., Ui + μ.

Finally, with regards to the depot, there is a time windows upper limit, U0,
associated with it, therefore, the following constraint has to be incorporated:

(i) The depot upper time windows Ui cannot be violated.

4 A MathGRASP Approach for the CumVRP

Matheuristics are algorithms that have been used successfully in routing prob-
lems [21]. These algorithms are based on combining heuristic or metaheuristic
schemes and mathematical programming models to obtain high quality solu-
tions. There are various applications of these techniques to solve variants of
VRPs, such as time windows [22], multi-depot [23], electric vehicle [24], and
cross-docking [25]. A matheuristic for the Pollution Routing Problem (PRP) is
presented in [26], where a metaheuristic based on local search is combined with
a MILP model. In [23] Multi-Depot CCVRP is solved using the POPMUSIC
matheuristic algorithm (see [27]). This matheuristic consists in dividing a large
problem into parts and then several of those parts are seen as subproblems to
be solved through an exact approach.

For solving the CumVRP with time windows, we present a matheuristic
based approach termed as MathGRASP. It is based on the hybridization of the
Greedy Randomized Adaptive Search Procedure (GRASP) with an solving to
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optimality the optimization model. Our matheuristic is described in the context
of a GRASP metaheuristic (see Algorithm 1). The GRASP algorithm [28] is an
iterative method where each iteration has two phases: (i) construction and (ii)
local search (lines 5–6).

Algorithm 1. MathGRASP Pseudocode
Input: C vehicles, V customers, rcl, Max Iter

1: TF = ∅;
2: Preprocessing();
3: while (Max Iter > 0) do
4: T = ∅;
5: T = Construction Algorithm(rcl, V, C);
6: T ∗ = Local Search(T );
7: if (f(T ∗) < f(TF )) then
8: TF = T ∗;
9: end if

10: Max Iter -=1;
11: end while
12: return TF ;

Initially a preprocessing of data (line 2) is performed. The constructive algo-
rithm is provided with the set of vehicles and customers, in addition to the
parameter rcl (size of restricted candidate list) and provides feasible solutions
consisting of a set of subtours (τi ∈ T ) (line 5). After construction procedure,
the best solution is selected and a local search procedure is applied to it (line 6).
Finally, the algorithm updates the best tour found (lines 7-9) and returns the
best solution obtained in all iterations TF (line 12). In the following subsections
we describe the components of the algorithm.

Solution Representation. The solution of the problem is stored in TF , repre-
sented by a matrix, where each row represents a subtour τi, and in each subtour
there is a sequence of (Customers ∈ τi) to visit (see Fig. 1).

TF =

τ1
τ2
...

τn

⎡
⎢⎢⎢⎣

Depot Customer9 Customer8 . . . Depot
Depot Customer3 Customer7 . . . Depot

...
...

...
. . .

...
Depot Customer6 Customer5 . . . Depot

⎤
⎥⎥⎥⎦

Fig. 1. Solution structure composed of subtours.

Construction Algorithm. In each iteration of Algorithm2, a feasible solution
to the problem is constructed. It aims at making as few subtours as possible.
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Each subtour considers the depot as the starting node. To create a subtour at
each iteration, the array of customers is sorted in ascending order with respect to
the distance between each customer and the last customer added to the subtour
(initially the depot) (line 4). A restricted candidate list of customers RCL is
constructed with rcl size, and on it the first RCL customer from V is added (line
5–6). After that, a customer is randomly selected from the restricted candidate
list (line 7) and takes into account the available capacity of the vehicle, the
candidate is added to the corresponding subtour (lines 8–12). Once the maximum
capacity of the vehicle is completed, the variables are updated to form a new
subtour (line 13). The procedure is performed while there are customers without
visiting (line 3). Once the subtours have been established, the route to be carried
out complying either with the hard or soft time windows is locally optimized
(procedure described in the following subsection) and each subtour is updated
(line 16). Finally, a feasible solution to the problem is returned (line 17).

Algorithm 2. Construction Algorithm(rcl, V , C) Pseudocode
1: T = ∅;
2: c = Choose the initial Vehicle of C;
3: while (!V.empty()) do
4: Sort array of Customer V ;
5: Ub = min(rcl, |V |);
6: RCL = V [0 : Ub];
7: cand = RCL[random(1, |RCL|)];
8: if (c.Current Load + cand.Demand ≤ c.Maximum Payload) then
9: Add cand to T at c.index;

10: Update Current Load;
11: Delete the cand from V ;
12: else
13: c = Choose the next Vehicle of C;
14: end if
15: end while
16: T = Solve MILP(T ); � see Exact solution subsubsection
17: return T ;

– Exact solution: The model proposed in [5] incorporating the time windows
constraints as discussed in Subsect. 3.1 are reformulated to optimize each sub-
tour obtained by (Algorithm2, lines 1–16). In both cases, to cover the total
demand of each subtour, only one vehicle will be necessary, since the sum
of the customers’ demand considered each time is less than the maximum
load supported by the vehicle. After completing the previous step in both
formulations, the decision variable k is eliminated and the new assumption is
added:

(j) For each subtour, only one loop can be performed.
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In both cases, it is not necessary to assess the penalty for using vehicles in
the objective function, therefore the Eqs. (4) and (6) are reformulated as the
Eqs. (7) and (8) for CumVRP-hTW and CumVRP-sTW respectively.

Min f1 (7)
Min λ1f1 + λ3f3 (8)

Local Search Algorithm. The Local Search (LS) algorithm is based on Hill-
Climbing (HC) algorithm with the first improvement strategy. The pseudocode of
the algorithm is shown in Algorithm3. The used Hill-Climbing algorithm works
with the best feasible solutions constructed by the Algorithm 2. The defined
movement is inspired by [29] where two subtours are randomly selected (lines
3–4). After that, two customers are selected so that the distance between them
is minimal (line 5) and a swap is performed (lines 6–7). Subsequently, the vehicle
capacity constraints are checked in each subtour and if these were satisfied, the
modified subtours are again optimized (line 9), and T is updated with the best
solution found (lines 10–12). Finally, after LS Iter iterations, the algorithm
returns the best solution found so far.

Algorithm 3. Local Search(T ) Pseudocode
1: while (LS Iter > 0) do

2: T ′
= T ;

3: τa = T ′
[random(0, |T ′ |)];

4: τb = T ′
[random(0, |T ′ |)] with τb �= τa;

5: Ca, Cb = Choose Two Customer of Minimum Distance from τa and τb;
6: Add ca into τb, Delete ca from τa;
7: Add cb into τa, Delete cb from τb;
8: if (Capacity Constraints for τa and τb) then

9: T ′
= Solve MILP(T ′

);

10: if (f(T ′
) < f(T )) then

11: T = T ′
;

12: end if
13: end if
14: end while
15: return T ;

5 Computational Study

In this section, we analyze the performance of MathGRASP for solving the pre-
viously discussed CumVRP variants. All implementations were done in C++11
using Visual Studio v15.9.2. The associated MILP formulations are solved using
IBM ILOG CPLEX v12.9.0 API. The equipment used for the tests was a pro-
cessor Intel(R) Xeon(R) Platinum 81171M CPU 2.60 GHz with 16 GB RAM
memory on Windows 10 OS. The matheuristic was run in single thread mode.
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5.1 Problem Instances

We perform tests on a selected set of 9 instances of PRPLIB proposed in [30], this
dataset consists of 9 sets of 20 instances each one, where the customers or nodes
quantities are in the range of 10 to 200 customer, and the values ω = 6350 kg
and Q = 3650 kg. In Table 1 shows the features for the set of selected instances.

Table 1. Features of PRPLib instances.

Instance Customers

UK10 01 10

UK15 01 15

UK20 20 20

UK25 01 25

UK50 01 50

UK75 01 75

UK100 05 100

UK150 12 150

UK200 01 200

5.2 Parameter Setting

A parameter tuning process was performed using ParamILS [31], an iterated local
search algorithm that works searching for better-quality parameter settings in
the neighborhoods of the current one. We provide to the tuner the following set
of parameters: rcl ∈ {3, 5, 7}, Max Iter ∈ {25, 50}, and LS Iter ∈ {25, 50}.
The results of this parameter setting indicate that values of Max Iter=50,
LS Iter=50 and rcl=5 are the most suitable parameters.

5.3 Results

Our matheuristic approach executed on the selected instances shows that it
keeps a stable performance mainly in small instances. This performance is due
to the wide scalability of the problem that we solve and the construction of the
initial subtours, trying to incorporate in each subtour the largest (see box-plots
in Fig. 2).

Table 2 shows the results of the matheuristic approach proposed in this work
(see Sect. 4) for CumVRP-hTW and CumVRP-sTW. In this table, column 1
reports the instance studied, columns 2 and 4 and columns 3 and 6 provide
the cumulative cost values and the number of vehicles with which the tour can
be traveled in CumVRP-hTW and CumVRP-sTW, respectively. Column 5 rep-
resents the cost of penalties due to delays of end of service, only valued for
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Fig. 2. Box-plot showing the f1 values (cumulative cost) for CumVRP-hTW and
CumVRP-sTW on PRPLib selected instances.

CumVRP-sTW. In the column (Gap (%)) the gap between both solutions (see
column 2 and 4) is calculated according to: 100× (f1Col4 −f1Col2)/f1Col4, f1Col4

represents the best solution obtained in each instance. In this sense, it shows
that the best results are obtained by solving CumVRP with soft time windows.
A negative value in this column indicates that an improvement in terms of the
objective function value is obtained.

Table 2. Computational results of the proposed matheuristic on PRPLib selected
instances. We consider μ = 1800 s and P = 1 cost/s.

Instance MathGRASP

CumVRP-hTW CumVRP-sTW Gap (%)

f1 k f1 f3 k

UK10 01 3153462870 2 3153462870 0.000 2 0.000

UK15 01 6304836673 2 6189389516 0.000 2 −1.865

UK20 20 8625693080 3 8510155558 299.000 3 −2.507

UK25 01 6403951960 3 6401431234 0.000 3 −0.039

UK50 01 14863720450 7 14822031464 0.000 8 −0.281

UK75 01 19127115942 15 19001902452 846.002 14 −0.659

UK100 05 18568502490 23 18504497844 1269.003 21 −0.346

UK150 12 39788688093 21 39094971926 792.000 21 −1.774

UK200 01 36133585632 25 34569374470 144.030 25 −4.525

The results on the instances UK10 01, UK15 01, UK25 01, and UK50 01
does not show a reduction in the cumulative cost between CumVRP-hTW and
CumVRP-sTW, because the time windows interval in these instances is very
wide, and it is not necessary to violate the upper limit Ui. The results for
UK20 20, UK75 01, UK100 05, UK150 12, and UK200 01 shows a minimization
of cumulative cost incurring in several penalties values by allowing violations in
the end times of services in some customers.
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Regarding the number of vehicles, this can vary between the soft and hard
variant of the problem, mainly in the instances with the largest number of cus-
tomers, this is due to the fact that in the construction procedure in Algorithm2
used for constructing subtours, it is taken into account the capacity of the vehi-
cle. However, in the constructive phase of this algorithm, the use of randomness
causes the construction of different subtours in each iteration of the algorithm.
Thus, for the same instance in an execution a different number of subtours can
be generated when compared to another execution of the algorithm, that implies
the variation on the number of vehicles.

The results obtained show that when time window violations are permitted,
the routes obtained have lower cumulative costs than problem with hard time
windows is solved. Due to the fact that the emissions of greenhouse gases can
be proportional to the cumulative cost, when this cost is reduced it also causes
some dissatisfaction of the customers (in terms of satisfying the time window
constraints), so it is possible to reduce the emissions.

The level of emissions reduction depends considerably on the attitude that a
company shows in compromising its service process. In this sense, if the allowed
delay time is very low or the penalties are very high, then it is not feasible
to violate the time window. In addition, a company could estimate different
penalties values P depending on how much each customer represents. Figure 3
shows the calculation of CO2 emissions for each of the variants studied.

Fig. 3. Comparison of total CO2 emissions values for CumVRP-hTW and CumVRP-
hTW on the selected instances.
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The calculation of emissions is done by using the following equation:

CO2 emissions (kg) = distance travelled(km)
× payload(t)
× emission factor(kg CO2e/t km)

(9)

where emission cost is obtained using the emission factor value of 0.41693 kg
CO2e/t km, averagely value for diesel-powered rigid vehicles weighted between
7.5 t and 17 t, suggested by DEFRA (2010) [32].

6 Conclusion and Future Research

In this work, we have investigated the Cumulative VRP with hard and soft time
windows. For solving these problem variants, we have developed a matheuristic
optimization approach that combines a Greedy Randomized Adaptive Search
Procedure with the exact solution of the optimization model.

The results show that including soft time windows constraints, lead to signif-
icant reductions in environmental costs. In this sense, this consideration of the
time windows might reflect better situations than hard time windows, especially
considering dynamic changes in problem features. However, when considering the
violation of a time window, a customer’s dissatisfaction occurs, but despite this,
there is a correct trade-off between time windows penalties and environmental
related costs.

Our matheuristic approach shows that the quality of the solutions increase
when each subtour is seen as a low complexity subproblem that can be solved
by a mathematical programming approach.

Finally, as future work, we will propose a benchmark that encompasses novel
features and new challenges for CumVRP with hard and soft time windows
constraints. In addition, we propose to extend CumVRP with soft and hard
constraints by considering fleets of heterogeneous vehicles.
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6. Kara, İ., Kara, B.Y., Yetis, M.K.: Energy minimizing vehicle routing problem.
In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 62–71.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4 9

7. Singh, R.R., Gaur, D.R.: Cumulative VRP: a simplified model of green vehicle
routing. In: Cinar, D., Gakis, K., Pardalos, P.M. (eds.) Sustainable Logistics and
Transportation. SOIA, vol. 129, pp. 39–55. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69215-9 3

8. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

9. Desaulniers, G., Madsen, O.B.G., Ropke, S.: The vehicle routing problem with time
windows (chap. 5). In: Vehicle Routing: Problems, Methods, and Applications, 2nd
edn., pp. 119–159. SIAM (2014)

10. Kallehauge, B.: Formulations and exact algorithms for the vehicle routing problem
with time windows. Comput. Oper. Res. 35(7), 2307–2330 (2008). Part Special
Issue: Includes selected papers presented at the ECCO 2004 European Conference
on combinatorial Optimization

11. Fagerholt, K.: Ship scheduling with soft time windows: an optimisation based app-
roach. Eur. J. Oper. Res. 131(3), 559–571 (2001)
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