54 research outputs found

    Temperature enhances the functional diversity of dissolved organic matter utilization by coastal marine bacteria

    Get PDF
    Although bulk bacterial metabolism in response to temperature has been determined for different oceanic regions, the impact of temperature on the functional diversity of dissolved organic matter (DOM) utilization has been largely unexplored. Here, we hypothesized that besides modifying the rates of carbon utilization, temperature can also alter the diversity of substrates utilized. The patterns of utilization of 31 model DOM compounds (as represented in Biolog EcoPlates™) by bacterioplankton were assessed using inocula from surface waters of the southern Bay of Biscay continental shelf over 1 year. Bacteria utilized more polymers and carbohydrates in late spring and summer than in winter, likely reflecting changes in substrate availability linked to the release and accumulation of DOM in phytoplankton post-bloom conditions. Seawater temperature correlated positively with the number of substrates utilized (i.e. functional richness) and this relationship was maintained in monthly experimental incubations spanning 3°C below and above in situ values. The enhancement of functional richness with experimental warming displayed a unimodal response to ambient temperature, peaking at 16°C. This temperature acted as a threshold separating nutrient-sufficient from nutrient-deficient conditions at the study site, suggesting that trophic conditions will be critical in the response of microbial DOM utilization to future warming

    Seasonal dynamics of natural Ostreococcus viral infection at the single cell level using VirusFISH

    Get PDF
    Ostreococcus is a cosmopolitan marine genus of phytoplankton found in mesotrophic and oligotrophic waters, and the smallest free-living eukaryotes known to date, with a cell diameter close to 1 μm. Ostreococcus has been extensively studied as a model system to investigate viral–host dynamics in culture, yet the impact of viruses in naturally occurring populations is largely unknown. Here, we used Virus Fluorescence in situ Hybridization (VirusFISH) to visualize and quantify viral-host dynamics in natural populations of Ostreococcus during a seasonal cycle in the central Cantabrian Sea (Southern Bay of Biscay). Ostreococcus were predominantly found during summer and autumn at surface and 50 m depth, in coastal, mid-shelf and shelf waters, representing up to 21% of the picoeukaryotic communities. Viral infection was only detected in surface waters, and its impact was variable but highest from May to July and November to December, when up to half of the population was infected. Metatranscriptomic data available from the mid-shelf station unveiled that the Ostreococcus population was dominated by the species O. lucimarinus. This work represents a proof of concept that the VirusFISH technique can be used to quantify the impact of viruses on targeted populations of key microbes from complex natural communities.Preprint5,84

    Update on Bone Grafting Materials Used in Dentistry in the Bone Healing Process: Our Experience from Translational Studies to Their Clinical Use

    Get PDF
    The use of bone grafts is important to preserve the alveolar bone ridge height and volume indispensable for dental implant placement. Despite the highly successful outcomes for the implant-supported overdentures, it seems that a majority of edentulous individuals have not pursued implant-based rehabilitation. Among the reasons cited for this, discrepancy between highly successful therapy and its acceptance is the cost of the treatment. Therefore, the development of biomaterials for bone grafting with comparable characteristics and biological effects than those renowned internationally is necessary. In addition, domestic manufacture would reduce the high costs in public health arising from the application of these biomaterials in the dental field. The aim of the following chapter is to offer an update on one bone grafting material frequently used in dentistry through an assessment of anorganic bovine bone graft in small and medium experimental models as well as its clinical use

    Scaling of sensory information in largeneural populations shows signatures ofinformation-limiting correlations

    Get PDF
    How is information distributed across large neuronal populations within a given brain area? Information may be distributed roughly evenly across neuronal populations, so that total information scales linearly with the number of recorded neurons. Alternatively, the neural code might be highly redundant, meaning that total information saturates. Here we investigate how sensory information about the direction of a moving visual stimulus is distributed across hundreds of simultaneously recorded neurons in mouse primary visual cortex. We show that information scales sublinearly due to correlated noise in these populations. We compartmentalized noise correlations into information-limiting and nonlimiting components, then extrapolate to predict how information grows with even larger neural populations. We predict that tens of thousands of neurons encode 95% of the information about visual stimulus direction, much less than the number of neurons in primary visual cortex. These findings suggest that the brain uses a widely distributed, but nonetheless redundant code that supports recovering most sensory information from smaller subpopulations.We would like to thank Alexandre Pouget, Peter Latham, and members of the HMSNeurobiology Department for useful discussions and feedback on the work, and RachelWilson and Richard Born for comments on early versions of the manuscript. The workwas supported by a scholar award from the James S. McDonnell Foundation (grant#220020462 to J.D.), grants from the NIH (R01MH115554 to J.D.; R01MH107620 to C.D.H.; R01NS089521 to C.D.H.; R01NS108410 to C.D.H.; F31EY031562 to A.W.J.), theNSF’s NeuroNex program (DBI-1707398. to R.N.), MINECO (Spain; BFU2017-85936-Pto R.M.-B.), the Howard Hughes Medical Institute (HHMI, ref 55008742 to R.M.-B.), theICREA Academia (2016 to R.M.-B.), the Government of Aragon (Spain; ISAAC lab, codT33 17D to I.A.-R.), the Spanish Ministry of Economy and Competitiveness (TIN2016-80347-R to I.A.-R.), the Gatsby Charitable Foundation (to R.N.), and an NSF GraduateResearch Fellowship (to A.W.J.)

    Novel interactions between phytoplankton and bacteria shape microbial seasonal dynamics in coastal ocean waters

    Get PDF
    Trophic interactions between marine phytoplankton and heterotrophic bacteria are at the base of the biogeochemical carbon cycling in the ocean. However, the specific interactions taking place between phytoplankton and bacterial taxa remain largely unexplored, particularly out of phytoplankton blooming events. Here, we applied network analysis to a 3.5-year time-series dataset to assess the specific associations between different phytoplankton and bacterial taxa along the seasonal scale, distinguishing between free-living and particle-attached bacteria. Using a newly developed network post-analysis technique we removed bacteria-phytoplankton correlations that were primarily driven by environmental parameters, to detect potential biotic interactions. Our results indicate that phytoplankton dynamics may be a strong driver of the inter-annual variability in bacterial community composition. We found the highest abundance of specific bacteria-phytoplankton associations in the particle-attached fraction, indicating a tighter bacteria-phytoplankton association than in the free-living fraction. In the particle-associated fraction we unveiled novel potential associations such as the one between Planctomycetes taxa and the diatom Leptocylindrus spp. Consistent correlations were also found between free-living bacterial taxa and different diatoms, including novel associations such as those between SAR11 with Naviculales diatom order, and between Actinobacteria and Cylindrotheca spp. We also confirmed previously known associations between Rhodobacteraceae and Thalassiosira spp. Our results expand our view on bacteria-phytoplankton associations, suggesting that taxa-specific interactions may largely impact the seasonal dynamics of heterotrophic bacterial communities

    More, smaller bacteria in response to ocean's warming?

    Get PDF
    Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria. Over this relatively short period, we also found that bacterioplankton cells were significantly smaller, a trend that is consistent with the hypothesized temperature-driven decrease in body size. Although decadal cell shrinking was observed for both groups, it was only LNA cells that were strongly coherent, with ecological theories linking temperature, abundance and individual size on both the seasonal and interannual scale. We explain this finding because, relative to their HNA counterparts, marine LNA bacteria are less diverse, dominated by members of the SAR11 clade. Temperature manipulation experiments in 2012 confirmed a direct effect of warming on bacterial size. Concurrent with rising temperatures in spring, significant decadal trends of increasing standing stocks (3% per year) accompanied by decreasing mean cell size (-1% per year) suggest a major shift in community structure, with a larger contribution of LNA bacteria to total biomass. The increasing prevalence of these typically oligotrophic taxa may severely impact marine food webs and carbon fluxes by an overall decrease in the efficiency of the biological pump.Versión del editor5,064

    The Role of N Plant Glycosilation in act d 2 allergenicity.

    Get PDF
    Plant allergens have hitherto been included in only several protein families that share no common biochemical features. Their physical, biochemical and immunological characteristics have been widely studied, but no definite conclusion has been reached about what makes a protein an allergen. N-glycosylation is characteristic of plant allergen sources but is not present in mammals

    Social Perceptions of Forest Ecosystem Services in the Democratic Republic of Congo

    Get PDF
    The forests of the Albertine Rift are known for their high biodiversity and the important ecosystem services they provide to millions of inhabitants. However, their conservation and the maintenance of ecosystem service delivery is a challenge, particularly in the Democratic Republic of the Congo. Our research investigates how livelihood strategy and ethnicity affects local perceptions of forest ecosystem services. We collected data through 25 focus-group discussions in villages from distinct ethnic groups, including farmers (Tembo, Shi, and Nyindu) and hunter-gatherers (Twa). Twa identify more food-provisioning services and rank bush meat and honey as the most important. They also show stronger place attachment to the forest than the farmers, who value other ecosystem services, but all rank microclimate regulation as the most important. Our findings help assess ecosystem services trade-offs, highlight the important impacts of restricted access to forests resources for Twa, and point to the need for developing alternative livelihood strategies for these communities

    Uncovering Ecosystem Service Bundles through Social Preferences

    Get PDF
    Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs
    corecore