66 research outputs found

    Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors

    Get PDF
    Pluripotent cells can be derived from different types of somatic cells by nuclear reprogramming through the ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc. However, it is unclear whether postmitotic neurons are susceptible to direct reprogramming. Here, we show that postnatal cortical neurons, the vast majority of which are postmitotic, are amenable to epigenetic reprogramming. However, ectopic expression of the four canonical reprogramming factors is not sufficient to reprogram postnatal neurons. Efficient reprogramming was only achieved after forced cell proliferation by p53 suppression. Additionally, overexpression of repressor element-1 silencing transcription, a suppressor of neuronal gene activity, increased reprogramming efficiencies in combination with the reprogramming factors. Our findings indicate that terminally differentiated postnatal neurons are able to acquire the pluripotent state by direct epigenetic reprogramming, and this process is made more efficient through the suppression of lineage specific gene expression. STEM CELLS 2011;29:992–1000National Institutes of Health (U.S.) (Grant NIH HD045022)National Institutes of Health (U.S.) (Grant 5R37CA084198)Howard Hughes Medical Institut

    Transdiagnostic association between subjective insomnia and depressive symptoms in major psychiatric disorders

    Get PDF
    In psychiatric disorders, comorbid depressive symptoms are associated with clinically important issues such as reduced quality of life, a poor prognosis, and increased suicide risk. Previous studies have found a close relationship between insomnia and depressive symptoms in major depressive disorder (MDD), and that actively improving insomnia heightens the improvement of depressive symptoms. This study aimed to investigate whether the association between insomnia and depressive symptoms is also found in other psychiatric disorders besides MDD. The subjects were 144 patients with MDD (n = 71), schizophrenia (n = 25), bipolar disorder (n = 22), or anxiety disorders (n = 26). Sleep status was assessed subjectively and objectively using the Athens Insomnia Scale (AIS) and sleep electroencephalography (EEG), respectively. Sleep EEG was performed using a portable EEG device. Depressive symptoms were assessed using the Beck Depression Inventory. Subjective insomnia, as defined by the AIS, was associated with depressive symptoms in all disorders. Moreover, in schizophrenia, a relation between depressive symptoms and insomnia was also found by objective sleep assessment methods using sleep EEG. Our findings suggest that the association between subjective insomnia and depressive symptoms is a transdiagnostic feature in major psychiatric disorders. Further studies are needed to clarify whether therapeutic interventions for comorbid insomnia can improve depressive symptoms in major psychiatric disorders, similar to MDD

    Small RNA-mediated regulation of iPS cell generation

    Get PDF
    The generation of induced pluripotent stem cells is limited by the low reprogramming efficiency of somatic cells. Here, three clusters of miRNAs are shown to enhance reprogramming efficiency by targeting the TGF-β and p53 pathways, which inhibit the process

    Purified Mesenchymal Stem Cells Are an Efficient Source for iPS Cell Induction

    Get PDF
    Induced pluripotent stem (iPS) cells are generated from mouse and human somatic cells by the forced expression of defined transcription factors. Although most somatic cells are capable of acquiring pluripotency with minimal gene transduction, the poor efficiency of cell reprogramming and the uneven quality of iPS cells are still important problems. In particular, the choice of cell type most suitable for inducing high-quality iPS cells remains unclear.Here, we generated iPS cells from PDGFRα+ Sca-1+ (PαS) adult mouse mesenchymal stem cells (MSCs) and PDGFRα⁻ Sca-1⁻ osteo-progenitors (OP cells), and compared the induction efficiency and quality of individual iPS clones. MSCs had a higher reprogramming efficiency compared with OP cells and Tail Tip Fibroblasts (TTFs). The iPS cells induced from MSCs by Oct3/4, Sox2, and Klf4 appeared to be the closest equivalent to ES cells by DNA microarray gene profile and germline-transmission efficiency.Our findings suggest that a purified source of undifferentiated cells from adult tissue can produce high-quality iPS cells. In this context, prospectively enriched MSCs are a promising candidate for the efficient generation of high-quality iPS cells

    Improved development of mouse and human embryos using a tilting embryo culture system

    Get PDF
    Mammalian embryos experience not only hormonal but also mechanical stimuli, such as shear stress, compression and friction force in the Fallopian tube before nidation. In order to apply mechanical stimuli to embryos in a conventional IVF culture system, the tilting embryo culture system (TECS) was developed. The observed embryo images from the TECS suggest that the velocities and shear stresses of TECS embryos are similar to those experienced in the oviduct. Use of TECS enhanced the development rate to the blastocyst stage and significantly increased the cell number of mouse blastocysts (P < 0.05). Although not statistically significant, human thawed embryos showed slight improvement in development to the blastocyst stage following culture in TECS compared with static controls. Rates of blastocyst formation following culture in TECS were significantly improved in low-quality embryos and those embryos cultured under suboptimal conditions (P < 0.05). The TECS is proposed as a promising approach to improve embryo development and blastocyst formation by exposing embryos to mechanical stimuli similar to those in the Fallopian tube

    Two Factor Reprogramming of Human Neural Stem Cells into Pluripotency

    Get PDF
    BACKGROUND:Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease. METHODOLOGY AND PRINCIPAL FINDINGS:Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE:We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs

    Gingival Fibroblasts as a Promising Source of Induced Pluripotent Stem Cells

    Get PDF
    Induced pluripotent stem (iPS) cells efficiently generated from accessible tissues have the potential for clinical applications. Oral gingiva, which is often resected during general dental treatments and treated as biomedical waste, is an easily obtainable tissue, and cells can be isolated from patients with minimal discomfort.We herein demonstrate iPS cell generation from adult wild-type mouse gingival fibroblasts (GFs) via introduction of four factors (Oct3/4, Sox2, Klf4 and c-Myc; GF-iPS-4F cells) or three factors (the same as GF-iPS-4F cells, but without the c-Myc oncogene; GF-iPS-3F cells) without drug selection. iPS cells were also generated from primary human gingival fibroblasts via four-factor transduction. These cells exhibited the morphology and growth properties of embryonic stem (ES) cells and expressed ES cell marker genes, with a decreased CpG methylation ratio in promoter regions of Nanog and Oct3/4. Additionally, teratoma formation assays showed ES cell-like derivation of cells and tissues representative of all three germ layers. In comparison to mouse GF-iPS-4F cells, GF-iPS-3F cells showed consistently more ES cell-like characteristics in terms of DNA methylation status and gene expression, although the reprogramming process was substantially delayed and the overall efficiency was also reduced. When transplanted into blastocysts, GF-iPS-3F cells gave rise to chimeras and contributed to the development of the germline. Notably, the four-factor reprogramming efficiency of mouse GFs was more than 7-fold higher than that of fibroblasts from tail-tips, possibly because of their high proliferative capacity.These results suggest that GFs from the easily obtainable gingival tissues can be readily reprogrammed into iPS cells, thus making them a promising cell source for investigating the basis of cellular reprogramming and pluripotency for future clinical applications. In addition, high-quality iPS cells were generated from mouse GFs without Myc transduction or a specific system for reprogrammed cell selection

    Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass

    Get PDF
    Recent advances in our understanding of the biology of muscle, and how anabolic and catabolic stimuli interact to control muscle mass and function, have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle occurs as a consequence of several chronic diseases (cachexia) as well as normal aging (sarcopenia). Although many negative regulators [Atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.] have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of mediators markedly differs among these conditions. Sarcopenic and cachectic muscles have been demonstrated to be abundant in myostatin- and apoptosis-linked molecules. The ubiquitin–proteasome system (UPS) is activated during many different types of cachexia (cancer cachexia, cardiac heart failure, chronic obstructive pulmonary disease), but not many mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Some studies have indicated a change of autophagic signaling during both sarcopenia and cachexia, but the adaptation remains to be elucidated. This review provides an overview of the adaptive changes in negative regulators of muscle mass in both sarcopenia and cachexia
    corecore